Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  Water  /  Vol: 9 Núm: 10 Par: 0 (2017)  /  Artículo
ARTÍCULO
TITULO

Application of Hydrological Model PRMS to Simulate Daily Rainfall Runoff in Zamask-Yingluoxia Subbasin of the Heihe River Basin

Fei Teng    
Wenrui Huang    
Yi Cai    
Chunmiao Zheng    
Songbin Zou    

Resumen

The Precipitation-Runoff Modeling System (PRMS) has been applied to simulate rainfall runoff in Zamask-Yingluoxia subbasin of the Heihe River Basin in this study. By using observed data in the subbasin, the model has been calibrated by comparing model simulations of daily stream flow to observed data at Yinglouxia station for the period of summer in 2004. Then model verification was conducted by keeping the same model parameters for the simulation of the period from 1 January 2003 to 31 December 2006. Results from model verification indicate that the model is able to provide good accuracy of simulations of daily rainfall runoff and river flow at Yinglouxia station, with a Nash-Sutcliffe Efficiency coefficient of 0.90 and the root-mean-square error of 15.7 m3/s. The error of maximum peak flow is 6.9 m3/s (1.8%) and the error of mean flow is 1.4 m3/s (2.5%). Comparing to previous studies, results indicate the improvement of model accuracy in simulations of daily rainfall runoff. The calibrated and verified hydrological model can be used to support flood hazard mitigations and water resource management in the Zamask-Yingluoxia subbasin.

 Artículos similares

       
 
Antoine Picard, Florent Barbecot, Gérard Bardoux, Pierre Agrinier, Marina Gillon, José A. Corcho Alvarado, Vincent Schneider, Jean-François Hélie and Frédérick de Oliveira    
Accurate discharge measurement is mandatory for any hydrological study. While the ?velocity? measurement method is adapted to laminar flows, the ?dilution? method is more appropriate for turbulent streams. As most low-gradient streams worldwide are neith... ver más
Revista: Hydrology

 
Jhon B. Valencia, Vladimir V. Guryanov, Jeison Mesa-Diez, Nilton Diaz, Daniel Escobar-Carbonari and Artyom V. Gusarov    
This paper presents a hydrological assessment of the 113,981 km2 Meta River basin in Colombia using 13 global climate models to predict water yield for 2050 under two CMIP6 scenarios, SSP 4.5 and SSP 8.5. Despite mixed performance across subbasins, the m... ver más
Revista: Hydrology

 
Felix Oteng Mensah, Clement Aga Alo and Duke Ophori    
The exigency of the current climate crisis demands a more comprehensive approach to addressing location-specific climate impacts. In the Passaic River Basin (PRB), two bodies of research?hydroclimatic trend detection and hydrological modeling?have been c... ver más
Revista: Hydrology

 
Fahad Alshehri and Mark Ross    
This hydrological study investigated a combined rating methodology tested on a 14,090 km2 area in Southwest Florida. The approach applied the Hydrological Simulation Program-Fortran (HSPF) over a 23-year period and was validated by 28 stream gauging stat... ver más
Revista: Water

 
Bingyu Zhang, Yingtang Wei, Ronghua Liu, Shunzhen Tian and Kai Wei    
The calibration and validation of hydrological model simulation performance and model applicability evaluation in Gansu Province is the foundation of the application of the flash flood early warning and forecasting platform in Gansu Province. It is diffi... ver más
Revista: Water