Redirigiendo al acceso original de articulo en 15 segundos...
ARTÍCULO
TITULO

Decision Tree and K-Nearest Neighbor (K-NN) Algorithm Based on Particle Swarm Optimization (PSO) for Diabetes Mellitus Prediction Accuracy Analysis DOI : 10.24114/cess.v7i2.34245 | Abstract views : 49 times

Andi Nur Rachman    
Supratman Supratman    
Euis Nur Fitriani Dewi    

Resumen

Penyakit Diabetes Mellitus merupakan penyakit tidak menular, tetapi penyakit ini  merupakan salah satu penyakit yang mematikan bagi yang mengidapnya. Penyakit ini disebabkan oleh beberapa factor diantaranya pola makan hidup yang tidak teratur atau berlebihan. Apabila penyakit ini tidak dihentikan, maka penderita penyakit Diabetes Mellitus akan semakin memakan para pasien penderita penyakit ini. Menurut WHO atau World Health Organization, sekitar 425 juta orang menderita penyakit diabetes, kemudian 1,6 juta kematian setiap tahunnya di akibatkan oleh penyakit diabetes. Kemudian, pada tahun 2016 di Indonesia, kematian yang disebabkan oleh penyakit diabetes sekitar 99 ribu jiwa. Penyakit diabetes pada tahun ke tahun semakin meningkat, jadi perlu adanya sebuah sistem yang dapat membantu medis untuk melakukan klasifikasi terhadap diabetes berdasarkan data kesehatan pasien. Salah satu metode yang dapat digunakan untuk memprediksi penyakit diabetes mellitus adalah dengan menggunakan data mining. Data mining merupakan suatu proses yang interaktif untuk memprediksi penyakit diabetes mellitus. Prediksi untuk mendiagnosis penyakit ini menggunakan seleksi fitur berbasis Particle Swarm Optimization (PSO) pada dataset Kaggle.com. Dan metode klasifikasi yang digunakan yaitu metode Decision Tree dan K-Nearest Neighbors (K-NN). Hasil dari penelitian ini menghasilkan nilai akurasi tertinggi sebanyak 79.8% dengan AUC 0.71 dengan menggunakan metode Decision Tree, dan untuk menggunakan optimasi metode K-Nearest Neighbors (K-NN) menggunakan Particle Swarm Optimization (PSO) memiliki nilai akurasi tertinggi sebanyak 77.09%.

 Artículos similares

       
 
Aravind Kolli, Qi Wei and Stephen A. Ramsey    
In this work, we explored computational methods for analyzing a color digital image of a wound and predicting (from the analyzed image) the number of days it will take for the wound to fully heal. We used a hybrid computational approach combining deep ne... ver más
Revista: Computation

 
Mohammad Shokouhifar, Mohamad Hasanvand, Elaheh Moharamkhani and Frank Werner    
Heart disease is a global health concern of paramount importance, causing a significant number of fatalities and disabilities. Precise and timely diagnosis of heart disease is pivotal in preventing adverse outcomes and improving patient well-being, there... ver más
Revista: Algorithms

 
Chunru Cheng, Linbing Wang, Xingye Zhou and Xudong Wang    
As the main cause of asphalt pavement distress, rutting severely affects pavement safety. Establishing an accurate rutting prediction model is crucial for asphalt pavement maintenance, pavement structure design, and pavement repair. This study explores f... ver más
Revista: Applied Sciences

 
Xin Liao and Khoi D. Hoang    
Distributed Constraint Optimization Problems (DCOPs) are an efficient framework widely used in multi-agent collaborative modeling. The traditional DCOP framework assumes that variables are discrete and constraint utilities are represented in tabular form... ver más
Revista: Applied Sciences

 
Subin Kim, Heejin Hwang, Keunyeong Oh and Jiuk Shin    
The seismically deficient column details in existing reinforced concrete buildings affect the overall behavior of the building depending on the failure type of the column. The purpose of this study is to develop and validate a machine-learning-based pred... ver más
Revista: Applied Sciences