Resumen
Permasalahan pemukiman yang sering terjadi diperkotaan adalah keterbatasan lahan untuk tempat tinggal sedangkan pertumbuhan penduduk semakin berkembang sehingga diperlukan prasarana tempat tinggal untuk masyarakat yang golongan ekonomi kurang mampu. Kelancaran pembayaran uang sewa rumah susun masih menjadi kendala sehingga diperlukan suatu sistem untuk mengklasifikasi dan prediksi kemampuan bayar oleh masyarakat. Tujuan penelitian ini adalah untuk menganalisa algoritma yang bagus dengan nilai akurasi yang tinggi agar bisa diimpelementasikan pada sistem. Sumber dataset yang digunakan dari database aplikasi sewa rumahsusun dengan variabel yang digunakan adalah nobriva, pekerjaan, statuspekerjaan, gaji, hargasewa dan keterangan. Algoritma yang digunakan dalam penelitian ini adalah Decision Tree dan Backpropagation dengan arsitektur 5-5-2. Berdasarkan hasil uji maka didapat nilai akurasi Decision Tree sebesar 90%, sedangkan nilai akurasi dengan algoritma Backpropagation dan arsitektur jumlah 5 node layer, 5 node hiden layer dan 2 node output layer dengan menggunakan activation sigmoid maka menghasilkan nilai akurasi sebesar 88.39%.Settlement problems that often occur in urban areas are limited land for residence while population growth is growing, so residential infrastructure is needed for economically disadvantaged people. The smooth payment of rent for flats is still an obstacle, so a system is needed to classify and predict the ability to pay by the public. This study aims to analyze a good algorithm with a high accuracy value so that it can be implemented in the system. The dataset source used is the flat rental application database, with the variables used are nobriva, occupation, employment status, salary, rental price, and description. The algorithm used in this research is Decision Tree and Backpropagation with 5-5-2 architecture. Based on the test results, the accuracy value of the Decision Tree is 90%. In contrast, the accuracy value with the Backpropagation algorithm and architecture consists of 5 node layers, 5 hidden layer nodes, and 2 output layer nodes using sigmoid activation, resulting in an accuracy value of 88.39%.