Redirigiendo al acceso original de articulo en 21 segundos...
ARTÍCULO
TITULO

Comparison of Machine Learning Algorithms in Analyzing Public Opinion Sentiments Against Fuel Price Increases DOI : 10.24114/cess.v8i1.41911 | Abstract views : 12 times

Hanif Wira Saputra    
Rahmaddeni Rahmaddeni    

Resumen

Twitter is a social media platform that is quite widely used by the world community, especially people in Indonesia. Twitter is one of the social media that provides information, one of which is the increase in the price of crude oil which was recorded at 105 US dollars per barrel. The increase in fuel prices has a negative impact on society, causing pros and cons. Based on these problems, the authors aim to compare the performance of the artificial neural network and naïve Bayes algorithms to determine the best model for sentiment analysis of fuel price hikes. The data used amounted to 1000 datasets in the form of text documents with labeling using the lexicon and split data 90:10, 80:20, 70:30 and 60:40 as a comparison of precision values. The application of word vectorization utilizes TF-IDF in assigning a weight value to each word. Based on the results of the experiments that have been carried out, it is found that the best algorithm using an artificial neural network is capable of producing an accuracy value of 87% for 1000 data on public opinion sentiment on fuel price hikes. Based on the evaluation results, the model built can categorize public opinion sentiment into positive sentiment, negative sentiment, and neutral sentiment automatically and the polarity of public sentiment tends to be positive towards the issue of the fuel price increase that occurred.  

 Artículos similares

       
 
Sipho G. Thango, Georgios A. Drosopoulos, Siphesihle M. Motsa and Georgios E. Stavroulakis    
A methodology to predict key aspects of the structural response of masonry walls under blast loading using artificial neural networks (ANN) is presented in this paper. The failure patterns of masonry walls due to in and out-of-plane loading are complex d... ver más
Revista: Infrastructures

 
Mojtaba Nayyeri, Modjtaba Rouhani, Hadi Sadoghi Yazdi, Marko M. Mäkelä, Alaleh Maskooki and Yury Nikulin    
One of the main disadvantages of the traditional mean square error (MSE)-based constructive networks is their poor performance in the presence of non-Gaussian noises. In this paper, we propose a new incremental constructive network based on the correntro... ver más
Revista: Algorithms

 
Fenfang Li, Zhengzhang Zhao, Li Wang and Han Deng    
Sentence Boundary Disambiguation (SBD) is crucial for building datasets for tasks such as machine translation, syntactic analysis, and semantic analysis. Currently, most automatic sentence segmentation in Tibetan adopts the methods of rule-based and stat... ver más
Revista: Applied Sciences

 
Falah Amer Abdulazeez, Ismail Taha Ahmed and Baraa Tareq Hammad    
A significant quantity of malware is created on purpose every day. Users of smartphones and computer networks now mostly worry about malware. These days, malware detection is a major concern in the cybersecurity area. Several factors can impact malware d... ver más
Revista: Applied Sciences

 
Kui Zeng, Shutan Xu, Daode Shu and Ming Chen    
Medaka (Oryzias latipes), as a crucial model organism in biomedical research, holds significant importance in fields such as cardiovascular diseases. Currently, the analysis of the medaka ventricle relies primarily on visual observation under a microscop... ver más
Revista: Applied Sciences