Resumen
The calculation of rocket trajectories is most often performed using purely numerical methods that account for all relevant parameters and provide the required results. There is a complementary need for analytical methods that make more explicit the effect of the various rocket and atmospheric parameters of the trajectory and can be used as test cases with unlimited accuracy. The available analytical methods take into account (i) variable rocket mass due to propellant consumption. The present paper includes four new analytical methods taking into account besides (i) also (ii) nonlinear aerodynamic forces proportional to the square of the velocity and (iii) exponential dependence of the mass density with altitude for an isothermal atmospheric layer. The four new methods can be used in “hybrid analytical-numerical” approach in which: (i) the atmosphere is divided into isothermal rather than homogeneous layers for greater physical fidelity; and (ii) in each layer, an exact analytical solution of the equations of motion with greater mathematical accuracy than a numerical approximation is used. This should allow a more accurate calculation of rocket trajectories while discretizing the atmosphere into a smaller number of layers. The paper therefore concentrates on four analytical methods of calculation of rocket trajectories in an isothermal atmospheric layers using new exact solutions of the equations of motion beyond those currently available in the literature. The four methods are developed first for the simpler case of a vertical climb and will be subsequently extended to the practically more relevant case of a gravity turn.