Redirigiendo al acceso original de articulo en 20 segundos...
Inicio  /  Information  /  Vol: 7 Núm: 2 Par: June (2016)  /  Artículo
ARTÍCULO
TITULO

Using Proven Reference Monitor Patterns for Security Evaluation

 Artículos similares

       
 
Michael Finigian, Peter Apostolos Kavounas, Ian Ho, Conor Cian Smith, Adam Witusik, Andrew Hopwood, Camron Avent, Brandon Ragasa and Brian Roth    
Unmanned aerial vehicles (UAVs) have already proven valuable for intelligence, search, and reconnaissance missions; however, their integration into manned aircraft to augment existing capabilities is still an emerging field. This paper describes the desi... ver más
Revista: Aerospace

 
Tamás Kegyes, Alex Kummer, Zoltán Süle and János Abonyi    
We analyzed a special class of graph traversal problems, where the distances are stochastic, and the agent is restricted to take a limited range in one go. We showed that both constrained shortest Hamiltonian pathfinding problems and disassembly line bal... ver más
Revista: Information

 
Sasha Petrenko, Daniel B. Hier, Mary A. Bone, Tayo Obafemi-Ajayi, Erik J. Timpson, William E. Marsh, Michael Speight and Donald C. Wunsch II    
Biomedical datasets distill many mechanisms of human diseases, linking diseases to genes and phenotypes (signs and symptoms of disease), genetic mutations to altered protein structures, and altered proteins to changes in molecular functions and biologica... ver más
Revista: Information

 
Lucas de Lima Casseres dos Santos, Jean Bruno Melo Silva, Luisa Soares Neves, Natalia dos Santos Renato, Julia Moltó, Juan Antonio Conesa and Alisson Carraro Borges    
The scarcity of natural resources makes it essential to develop products that meet environmental requirements. This is also true for the water and wastewater treatment business, where even consolidated processes, such as coagulation and flocculation, mus... ver más
Revista: Water

 
Jie Wang, Jie Yang, Jiafan He and Dongliang Peng    
Semi-supervised learning has been proven to be effective in utilizing unlabeled samples to mitigate the problem of limited labeled data. Traditional semi-supervised learning methods generate pseudo-labels for unlabeled samples and train the classifier us... ver más
Revista: Algorithms