Resumen
Conventional, multimodal and nanostructured WC-12Co coatings with different WC sizes and distributions were prepared by high velocity oxy-fuel spray (HVOF). The micrographs and structures of the coatings were analyzed by scanning electron microscope (SEM), X-ray diffractometer (XRD) et al. The porosity, microhardness and fracture toughness of the WC-Co coatings were measured. The coating resistance to cavitation erosion (CE) was investigated by ultrasonic vibration cavitation equipment and the cavitation mechanisms were explored. Results show that there is serious WC decarburization in nanostructured and multimodal WC-Co coatings with the formation of W2C and W phases. The nanostructured WC-Co coating has the densest microstructure with lowest porosity compared to the other two WC-Co coatings, as well as the highest fracture toughness among the three coatings. It was also discovered that the nanostructured WC-Co coating exhibits the best CE resistance and that the CE rate is approximately one-third in comparison with conventional coating.