Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Information  /  Vol: 8 Núm: 1 Par: March (2017)  /  Artículo
ARTÍCULO
TITULO

Forecasting Monthly Electricity Demands: An Application of Neural Networks Trained by Heuristic Algorithms

Jeng-Fung Chen    
Shih-Kuei Lo and Quang Hung Do    

Resumen

-

 Artículos similares

       
 
Chongxun Mo, Zhiwei Yan, Rongyong Ma, Xingbi Lei, Yun Deng, Shufeng Lai, Keke Huang and Xixi Mo    
As the runoff series exhibit nonlinear and nonstationary characteristics, capturing the embedded periodicity and regularity in the runoff series using a single model is challenging. To account for these runoff characteristics and enhance the forecasting ... ver más
Revista: Applied Sciences

 
Ming Ze Lee, Fatemeh Mekanik and Amin Talei    
El Niño Southern Oscillation is one of the significant phenomena that drives global climate variability, showing a relationship with extreme events. Reliable forecasting of ENSO phases can minimize the risks in many critical areas, including water supply... ver más

 
Yuruixian Zhang, Wei Chong Choo, Jen Sim Ho and Cheong Kin Wan    
Tourism forecasting has garnered considerable interest. However, integrating tourism forecasting with volatility is significantly less typical. This study investigates the performance of both the single models and their combinations for forecasting the v... ver más
Revista: Computation

 
S. Kokilavani, R. Pangayarselvi, S. P. Ramanathan, Ga. Dheebakaran, N. K. Sathyamoorthy, N. Maragatham, R. Gowtham     Pág. Page:69 - 76Abstract

 
Javier Estévez, Juan Antonio Bellido-Jiménez, Xiaodong Liu and Amanda Penélope García-Marín    
Accurate forecast of hydrological data such as precipitation is critical in order to provide useful information for water resources management, playing a key role in different sectors. Traditional forecasting methods present many limitations due to the h... ver más
Revista: Water