Resumen
The experimental wave paddle signal is unknown to the numerical modellers in many cases. This makes it quite challenging to numerically reproduce the time history of free surface elevation for irregular waves. In the present work, a numerical investigation is performed using a computational fluid dynamics (CFD) based model to validate and investigate a non-iterative free surface reconstruction technique for irregular waves. In the current approach, the free surface is reconstructed by spectrally composing the irregular wave train as a summation of the harmonic components coupled with the Dirichlet inlet boundary condition. The verification is performed by comparing the numerically reconstructed free surface elevation with theoretical input waves. The applicability of the present approach to generate irregular waves by reconstructing the free surface is investigated for different coastal and marine engineering problems. A numerical analysis is performed to validate the free surface reconstruction approach to generate breaking irregular waves over a submerged bar. The wave amplitudes, wave frequencies and wave phases are modelled with good accuracy in the time-domain during the higher-order energy transfers and complex processes like wave shoaling, wave breaking and wave decomposition. The present approach to generate irregular waves is also employed to model steep irregular waves in deep water. The free surface reconstruction method is able to simulate the irregular free surface profiles in deep water with low root mean square errors and high correlation coefficients. Furthermore, the irregular wave forces on a monopile are investigated in the time-domain. The amplitudes and phases of the force signal under irregular waves generated by using the current technique are modelled accurately in the time-domain. The proposed approach to numerically reproduce the free surface elevation in the time-domain provides promising and accurate results for all the benchmark cases.