Resumen
Free vibration (or eigenvalue analysis) is a prerequisite for aeroelastic analysis. For divergence analysis, slope influence coefficients (rotation at point i due to unit load at point j) are calculated using free vibration mode shapes and corresponding frequencies. The lowest eigenvalue is of interest and gives the divergence speed. The present paper considers the maximization problem of eigenfrequencies for composite panels. The influence of boundary conditions and constant or variable stiffnesses on optimization results are investigated herein. A new convenient set of design variables is employed in the analysis. The computations are carried out with the use of the Rayleigh–Ritz method and Finite Element analysis (2D quadrilateral and 3D solid elements).