Resumen
The great potential of regenerated cellulose fibers, which offer excellent possibilities as a matrix for the design of bioactive materials, was the lead for our research. We focused on the surface modification of fibers to improve the sorption properties of regenerated cellulose and biocomposite regenerated cellulose/chitosan fibers, which are on the market. The purpose of our investigation was also the modification of regenerated cellulose fibers with the functionalization by chitosan as a means of obtaining similar properties to biocomposite regenerated cellulose/chitosan fibers on the market. Argon gas plasma was used for fiber surface activation and chitosan adsorption. Ultrasound was also used as a treatment procedure for the surface activation of regenerated cellulose fibers and treatment with chitosan. Analyses have shown that ultrasonic energy or plasma change the accessibility of free functional groups, structure and reactivity, especially in regenerated cellulose fibers. Changes that occurred in the morphology and in the structure of fibers were also reflected in their physical and chemical properties. Consequently, moisture content, sorption properties and water retention improved.