Resumen
Porous light-absorbing and thermoregulating low-vacuum aluminum coatings (AC) precipitated by thermal evaporation were the object of this study. The small-angle X-ray scattering (SAXS), electron microscopy, precision hydrostatic weighing, and the dynamical technique for argon low-temperature desorption were used for our investigations. It was shown that AC pore formation in open space (OS) is conditioned by the reduction of molecular flow orienting impact and the increase of the diffusing-vacancy mechanism on coatings formation in zero-gravity conditions, which causes the formation of coarse and equiaxed pores with lowered polydispersity levels.