Resumen
Aluminum oxide thin films were prepared by medium frequency reactive magnetron sputtering. The target voltage hysteresis behavior under different argon partial pressure and target power conditions were studied. The results indicate that the target voltage hysteresis loop of aluminum oxide thin film preparation has typical behavior of that for reactive sputtering deposition of compound films. The target voltage feedback control approach was applied to circumvent the hysteresis problem. The microstructure and chemical composition of the aluminum oxide thin films prepared at different target voltage control points were investigated by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy and Auger electron spectroscopy. The results indicated that the prepared aluminum oxide thin films, which are compact and mostly amorphous, can be obtained with target voltage control point in the range of 25~35%.