Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Geosciences  /  Vol: 8 Núm: 8 Par: August (2018)  /  Artículo
ARTÍCULO
TITULO

Integration of Site Effects into Probabilistic Seismic Hazard Assessment (PSHA): A Comparison between Two Fully Probabilistic Methods on the Euroseistest Site

Claudia Aristizábal    
Pierre-Yves Bard    
Céline Beauval and Juan Camilo Gómez    

Resumen

The integration of site effects into Probabilistic Seismic Hazard Assessment (PSHA) is still an open issue within the seismic hazard community. Several approaches have been proposed varying from deterministic to fully probabilistic, through hybrid (probabilistic-deterministic) approaches. The present study compares the hazard curves that have been obtained for a thick, soft non-linear site with two different fully probabilistic, site-specific seismic hazard methods: (1) The analytical approximation of the full convolution method (AM) proposed by Bazzurro and Cornell 2004a,b and (2) what we call the Full Probabilistic Stochastic Method (SM). The AM computes the site-specific hazard curve on soil, HC(Sas(f)), by convolving for each oscillator frequency the bedrock hazard curve, HC(Sar(f)), with a simplified representation of the probability distribution of the amplification function, AF(f), at the considered site The SM hazard curve is built from stochastic time histories on soil or rock corresponding to a representative, long enough synthetic catalog of seismic events. This comparison is performed for the example case of the Euroseistest site near Thessaloniki (Greece). For this purpose, we generate a long synthetic earthquake catalog, we calculate synthetic time histories on rock with the stochastic point source approach, and then scale them using an adhoc frequency-dependent correction factor to fit the specific rock target hazard. We then propagate the rock stochastic time histories, from depth to surface using two different one-dimensional (1D) numerical site response analyses, while using an equivalent-linear (EL) and a non-linear (NL) code to account for code-to-code variability. Lastly, we compute the probability distribution of the non-linear site amplification function, AF(f), for both site response analyses, and derive the site-specific hazard curve with both AM and SM methods, to account for method-to-method variability. The code-to-code variability (EL and NL) is found to be significant, providing a much larger contribution to the uncertainty in hazard estimates, than the method-to-method variability: AM and SM results are found comparable whenever simultaneously applicable. However, the AM method is also shown to exhibit severe limitations in the case of strong non-linearity, leading to ground motion “saturation”, so that finally the SM method is to be preferred, despite its much higher computational price. Finally, we encourage the use of ground-motion simulations to integrate site effects into PSHA, since models with different levels of complexity can be included (e.g., point source, extended source, 1D, two-dimensional (2D), and three-dimensional (3D) site response analysis, kappa effect, hard rock …), and the corresponding variability of the site response can be quantified.

 Artículos similares

       
 
Claudia Meisina, Roberta Bonì, Massimiliano Bordoni, Carlo Giovanni Lai, Francesca Bozzoni, Renato Maria Cosentini, Doriano Castaldini, Daniela Fontana, Stefano Lugli, Alessandro Ghinoi, Luca Martelli and Paolo Severi    
Liquefaction-induced surface manifestations are the result of a complex geological?geotechnical phenomenon, driven by several controlling factors. We propose a multidisciplinary methodological approach, involving engineering geologists, geomorphologists,... ver más
Revista: Geosciences

 
Glenda Abate, Simone Bramante and Maria Rossella Massimino    
Several urban areas in the Mediterranean have already been subjected to seismic microzonation studies aimed at determining the acceleration expected on the ground surface, therefore mitigating the associated seismic risks. These studies have been general... ver más
Revista: Geosciences

 
Marc Peruzzetto, Anne Mangeney, Gilles Grandjean, Clara Levy, Yannick Thiery, Jérémy Rohmer and Antoine Lucas    
A key point of landslide hazard assessment is the estimation of their runout. Empirical relations linking angle of reach to volume can be used relatively easily, but they are generally associated with large uncertainties as they do not consider the topog... ver más
Revista: Geosciences

 
Zorigt Tumurbaatar, Hiroyuki Miura and Tsoggerel Tsamba    
Due to the population growth and urban sprawl in Ulaanbaatar city (UB), Mongolia, hazard and risk analysis for future earthquakes have become an important issue for disaster mitigation planning. Evaluation of a site effect is one of the essential parts o... ver más
Revista: Geosciences

 
Michael Freeman, Cory Vernon, Bryce Berrett, Nicole Hastings, Jeff Derricott, Jenessa Pace, Benjamin Horne, Joshua Hammond, Joseph Janson, Filiberto Chiabrando, John Hedengren and Kevin Franke    
A sequence of large earthquakes in central Italy ranging in moment magnitudes (Mw) from 4.2 to 6.5 caused significant damage to many small towns in the area. After each earthquake in 2016 (24 August and 26 October), automated small unmanned aerial vehicl... ver más
Revista: Geosciences