Resumen
Monitoring gaseous and particulate volcanic emissions with remote observations is of particular importance for climate studies, air quality and natural risk assessment. The concurrent impact of the simultaneous presence of sulphur dioxide (SO2) emissions and the subsequently formed secondary sulphate aerosols (SSA) on the thermal infraRed (TIR) satellite observations is not yet well quantified. In this paper, we present the first assessment of the combined sensitivity of pseudo-observations from three TIR satellite instruments (the Infrared Atmospheric Sounding Interferometer (IASI), the MODerate resolution Imaging Spectro radiometer (MODIS) and the Spinning Enhanced Visible and InfraRed Imager (SEVIRI)) to these two volcanic effluents, following an idealized moderate stratospheric eruption. Direct radiative transfer calculations have been performed using the 4A (Automatized Atmospheric Absorption Atlas) radiative transfer model during short-term atmospheric sulphur cycle evolution. The results show that the mutual effect of the volcanic SO2 and SSA on the TIR outgoing radiation is obvious after three to five days from the eruption. Therefore, retrieval efforts of SO2 concentration should consider the progressively formed SSA and vice-versa. This result is also confirmed by estimating the information content of the TIR pseudo-observations to the bi-dimensional retrieved vector formed by the total masses of sulphur dioxide and sulphate aerosols. We find that it is important to be careful when attempting to quantify SO2 burdens in aged volcanic plumes using broad-band instruments like SEVIRI and MODIS as these retrievals present high uncertainties. For IASI, the total errors are smaller and the two parameters can be retrieved as independent quantities.