Redirigiendo al acceso original de articulo en 20 segundos...
Inicio  /  Agronomy  /  Vol: 8 Núm: 7 Par: July (2018)  /  Artículo
ARTÍCULO
TITULO

Nitrate Assimilation Limits Nitrogen Use Efficiency (NUE) in Maize (Zea mays L.)

Dale Loussaert    
Josh Clapp    
Nick Mongar    
Dennis P. O?Neill and Bo Shen    

Resumen

Grain yield in maize responds to N fertility in a linear-plateau fashion with nitrogen use efficiency (NUE) higher under lower N fertilities and less as grain yield plateaus. Field experiments were used to identify plant parameters relative for improved NUE in maize and then experiments were performed under controlled conditions to elucidate metabolism controlling these parameters. Field experiments showed reproductive parameters, including R1 ear-weight, predictive of N response under both high and low NUE conditions. R1 ear-weight could be changed by varying nitrate concentrations early during reproductive development but from V12 onward R1 ear-weight could be changed little by increasing or decreasing nitrate fertility. Ammonia, on the other hand, could rescue R1 ear-weight as late as V15 suggesting nitrate assimilation (NA) limits ear development response to N fertility since bypassing NA can rescue R1 ear-weight. Nitrate reductase activity (NRA (in vitro)) increases linearly with nitrate fertility but in vivo nitrate reductase activity (NRA (in vivo)) follows organic N accumulation, peaking at sufficient levels of nitrate fertility. The bulk of the increase in total plant N at high levels of nitrate fertility is due to increased plant nitrate concentration. Increasing NADH levels by selective co-suppression of ubiquinone oxidoreductase 51 kDa subunit (Complex I) was associated with improved grain yield by increasing ear size, as judged by increased kernel number plant−1 (KNP), and increased NRA (in vivo) without a change in NRA (in vitro). These results support NUE is limited in maize by NA but not by nitrate uptake or NRA (in vitro).