Resumen
Microstructural evolution and formation mechanism of reaction layer for 22MnB5 steel hot-dipped in Al–10Si (in wt %) alloy was investigated. The microstructural identification of the reaction layer was characterized via transmission electron microscopy and electron backscatter diffraction. In addition, the formation mechanisms of the phases were discussed with vertical section (isopleth) of the (Al–Si–Fe) ternary system. The solidified Al–Si coating layer consisted of three phases of Al, Si, and τ5 (Al8Fe2Si). The reaction layer on the Al–Si coating layer side is a fine τ5 phase (Al8Fe2Si) of 5 μm thickness. The layer on the steel side consisted of an η phase (Fe2Al5) of thickness of 500 nm or less. τ1 (Al2Fe3Si3, triclinic) phase of 200-nm-thickness was formed in the η phase, and κ phase (Fe3AlC) of 40–50 nm thickness was formed between η phase and steel. The τ5 phase was formed by isothermal solidification at 690 °C in the liquid Al–10 wt % Si when 3.73–29.0 wt % of Fe was dissolved from the boron steel into the Al–Si liquid bath. It was considered that the η phase was formed by the diffusion reaction of Al, Si, and Fe between τ5 and ferrite steel. κ (Fe3AlC) phase was formed by the reaction of the carbon, which is barely employed in η and τ phases, and diffused Al.