Redirigiendo al acceso original de articulo en 19 segundos...
Inicio  /  Aerospace  /  Vol: 8 Par: 2 (2021)  /  Artículo
ARTÍCULO
TITULO

Configuration Study of Electric Helicopters for Urban Air Mobility

Julia A. Cole    
Lauren Rajauski    
Andrew Loughran    
Alexander Karpowicz and Stefanie Salinger    

Resumen

There is currently interest in the design of small electric vertical take-off and landing aircraft to alleviate ground traffic and congestion in major urban areas. To support progress in this area, a conceptual design method for single-main-rotor and lift-augmented compound electric helicopters has been developed. The design method was used to investigate the feasible design space for electric helicopters based on varying mission profiles and technology assumptions. Within the feasible design space, it was found that a crossover boundary exists as a function of cruise distance and hover time where the most efficient configuration changes from a single-main-rotor helicopter to a lift-augmented compound helicopter. In general, for longer cruise distances and shorter hover times, the lift-augmented compound helicopter is the more efficient configuration. An additional study was conducted to investigate the potential benefits of decoupling the main rotor from the tail rotor. This study showed that decoupling the main rotor and tail rotor has the potential to reduce the total mission energy required in all cases, allowing for increases in mission distances and hover times on the order of 5% for a given battery size.

Palabras claves

 Artículos similares

       
 
Samuel de Oliveira, Oguzhan Topsakal and Onur Toker    
Automated Machine Learning (AutoML) is a subdomain of machine learning that seeks to expand the usability of traditional machine learning methods to non-expert users by automating various tasks which normally require manual configuration. Prior benchmark... ver más
Revista: Information

 
Daniele Granata, Alberto Savino and Alex Zanotti    
The present study aimed to investigate the capability of mid-fidelity aerodynamic solvers in performing a preliminary evaluation of the static and dynamic stability derivatives of aircraft configurations in their design phase. In this work, the mid-fidel... ver más
Revista: Aerospace

 
Yannian Yang, Yu Liang, Stefan Pröbsting, Pengyu Li, Haoyu Zhang, Benxu Huang, Chaofan Liu, Hailong Pei and Bernd R. Noack    
In the near future, urban air mobility (UAM) will let an old dream of human society come true: affordable and fast air transportation for almost everyone. Among the various existing designs, the multicopter configuration best combines the advantages of c... ver más
Revista: Aerospace

 
Shuli Wang, Ziang Li and Qingxin Zhang    
The electric seaplane, designed for take-off and landing directly on water, incorporates additional structures such as floats to meet operational requirements. Consequently, during the take-off taxiing phase, it encounters significantly higher aerodynami... ver más
Revista: Aerospace

 
Daniel Molinero-Hernández, Sergio R. Galván-González, Nicolás D. Herrera-Sandoval, Pablo Guzman-Avalos, J. Jesús Pacheco-Ibarra and Francisco J. Domínguez-Mota    
Driven by the emergence of Graphics Processing Units (GPUs), the solution of increasingly large and intricate numerical problems has become feasible. Yet, the integration of GPUs into Computational Fluid Dynamics (CFD) codes still presents a significant ... ver más
Revista: Computation