Redirigiendo al acceso original de articulo en 21 segundos...
Inicio  /  Aerospace  /  Vol: 10 Par: 12 (2023)  /  Artículo
ARTÍCULO
TITULO

Performance Improvement of Human Centrifuge Systems through Multi-Objective Configurational Design Optimisation

Asher Winter    
Navid Mohajer    
Darius Nahavandi and Shady Mohamed    

Resumen

Human Centrifuge Systems (HCSs) are an effective training tool to improve the G-acceleration and Spatial Disorientation (SD) tolerance of aircrew. Though highly capable HCSs are available, their structure and performance are yet to be fully optimised to efficiently recreate the G-vectors produced using Aircraft Combat Manoeuvres (ACMs). To achieve this improvement, the relationship between configurational design and HCS performance should be profoundly investigated. This work proposes a framework for identifying the optimal configurational design of an active four Degree-of-Freedom (DoF) HCS. The relationship between configurational design parameters and objective criteria is established using inverse kinematics and dynamics. Then, a multi-objective evolutionary optimiser is used to identify the optimum arm length and seat position, minimising the Coriolis effect, relative acceleration ratio, and cost. The results of the work show that the applied optimisation step can significantly contribute to (1) efficiently replicating the aircraft motion, (2) minimising the detrimental effects generated during HCS motion, and (3) reducing the overall cost of the system. The applied methodology can be adapted to HCSs with different structures and DoFs.

 Artículos similares

       
 
Shuang Che, Yan Chen, Longda Wang and Chuanfang Xu    
This work discusses the electric vehicle (EV) ordered charging planning (OCP) optimization problem. To address this issue, an improved dual-population genetic moth?flame optimization (IDPGMFO) is proposed. Specifically, to obtain an appreciative solution... ver más
Revista: Algorithms

 
Darin Majnaric, Sandi Baressi ?egota, Nikola Andelic and Jerolim Andric    
One of the main problems in the application of machine learning techniques is the need for large amounts of data necessary to obtain a well-generalizing model. This is exacerbated for studies in which it is not possible to access large amounts of data?fo... ver más

 
Zhou Fang, Xiaoyong Wang, Liang Zhang and Bo Jiang    
Currently, deep learning is extensively utilized for ship target detection; however, achieving accurate and real-time detection of multi-scale targets remains a significant challenge. Considering the diverse scenes, varied scales, and complex backgrounds... ver más

 
Yihe He, Xiaojuan Shi and Honghu Ji    
Based on the orthogonal experimental method, a simulation case of the flow field of the ejector nozzle was designed to investigate the influence of the structural parameters of the ejector nozzle on the internal and external flow. This study explored the... ver más
Revista: Aerospace

 
Bangchu Zhang, Yiyong Liang, Shuitao Rao, Yu Kuang and Weiyu Zhu    
In hypersonic flight control, characterized by challenges posed by input saturation, model parameter uncertainties, and external disturbances, this paper introduces a pioneering anti-input saturation control method based on RBFNN adaptivity. We have deve... ver más
Revista: Aerospace