Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Aerospace  /  Vol: 6 Par: 7 (2019)  /  Artículo
ARTÍCULO
TITULO

Fault Tolerant Control of an Experimental Flexible Wing

Daniel Ossmann and Manuel Pusch    

Resumen

Active control techniques are a key factor in today?s aircraft developments to reduce structural loads and thereby enable highly efficient aircraft designs. Likewise, increasing the autonomy of aircraft systems aims to maintain the highest degree of operational performance also in fault scenarios. Motivated by these two aspects, this article describes the design and validation of a fault tolerant gust load alleviation control system on a flexible wing in a wind tunnel. The baseline gust load alleviation controller isolates and damps the weakly damped first wing bending mode. The mode isolation is performed via an H2 H 2 -optimal blending of control inputs and measurement outputs, which allows for the design of a simple single-input single-output controller to actively damp the mode. To handle actuator faults, a control allocation scheme based on quadratic programming is implemented, which distributes the required control energy to the remaining available control surfaces. The control allocation is triggered in fault scenarios by a fault detection scheme developed to monitor the actuators using nullspace based filter design techniques. Finally, the fault tolerant control scheme is verified by wind tunnel experiments.

 Artículos similares

       
 
Seyed Mohammad Hashemi, Seyed Ali Hashemi, Ruxandra Mihaela Botez and Georges Ghazi    
This paper presents a methodology for designing a highly reliable Air Traffic Management and Control (ATMC) methodology using Neural Networks and Peer-to-Peer (P2P) blockchain. A novel data-driven algorithm was designed for Aircraft Trajectory Prediction... ver más
Revista: Aerospace

 
Jiping Cong, Jianbo Hu, Yingyang Wang, Zihou He, Linxiao Han and Maoyu Su    
This paper presents a fault-tolerant attitude control scheme, incorporating reconfiguration control allocation for supersonic tailless aircraft subject to nonlinear characteristics, actuator constraint, uncertainty, and actuator faults. The main idea is ... ver más
Revista: Aerospace

 
Jihe Wang, Qingxian Jia and Dan Yu    
The issue of active attitude fault-tolerant stabilization control for spacecrafts subject to actuator faults, inertia uncertainty, and external disturbances is investigated in this paper. To robustly and accurately reconstruct actuator faults, a novel mi... ver más
Revista: Applied Sciences

 
Wanlu Zhu, Tianwen Gu, Jie Wu and Zhengzhuo Liang    
In instances where vessels encounter impacts or other factors leading to communication impairments, the status of electrical equipment becomes inaccessible through standard communication lines for the controllers. Consequently, the shipboard power system... ver más

 
Jiawen Li, Yujia Wang, Haiyan Li, Xing Liu and Zhengyu Chen    
Ocean currents, mechanical collisions and electronic damage can cause faults in an autonomous underwater vehicle (AUV), including sensors and thrusters. For such problems, this paper designs a fault-tolerant controller that is independent of the results ... ver más