Redirigiendo al acceso original de articulo en 23 segundos...
Inicio  /  Aerospace  /  Vol: 3 Par: 1 (2016)  /  Artículo
ARTÍCULO
TITULO

Turbulence Effects on Modified State Observer-Based Adaptive Control: Black Kite Micro Aerial Vehicle

Venkatasubramani S. R. Pappu    
James E. Steck and Guruganesh Ramamurthi    

Resumen

This paper presents the implementation of a modified state observer-based adaptive dynamic inverse controller for the Black Kite micro aerial vehicle. The pitch and velocity adaptations are computed by the modified state observer in the presence of turbulence to simulate atmospheric conditions. This state observer uses the estimation error to generate the adaptations and, hence, is more robust than model reference adaptive controllers which use modeling or tracking error. In prior work, a traditional proportional-integral-derivative control law was tested in simulation for its adaptive capability in the longitudinal dynamics of the Black Kite micro aerial vehicle. This controller tracks the altitude and velocity commands during normal conditions, but fails in the presence of both parameter uncertainties and system failures. The modified state observer-based adaptations, along with the proportional-integral-derivative controller enables tracking despite these conditions. To simulate flight of the micro aerial vehicle with turbulence, a Dryden turbulence model is included. The turbulence levels used are based on the absolute load factor experienced by the aircraft. The length scale was set to 2.0 meters with a turbulence intensity of 5.0 m/s that generates a moderate turbulence. Simulation results for various flight conditions show that the modified state observer-based adaptations were able to adapt to the uncertainties and the controller tracks the commanded altitude and velocity. The summary of results for all of the simulated test cases and the response plots of various states for typical flight cases are presented.

 Artículos similares

       
 
Le Duc Quyen, Young-Gyu Park, In-cheol Lee and Jun Myoung Choi    
Microplastics, ubiquitous in our environment, are significantly impacted by the hydrodynamic conditions around them. This study utilizes CFD to explore how various breaker types influence the dispersion and accumulation of microplastics in nearshore area... ver más

 
Cundong Xu, Junjiao Tian, Guoxia Wang, Haidong Lian, Rongrong Wang and Xiaomeng Hu    
The vortices, backflow, and siltation caused by sediment-laden flow are detrimental to the safe and efficient operation of pumping stations. To explore the effects of water?sediment two-phase flow on the velocity field, vorticity field, and sediment dist... ver más
Revista: Water

 
Dongfeng Yan, Zehang Zhao, Anchen Song, Fengming Li, Lu Ye, Ganchao Zhao and Shan Ma    
The fluidic pintle nozzle, a new method to control the thrust of a solid rocket motor, has been proposed in recent years by combining the pintle with the aerodynamic throat (fluidic throat). The study of static characteristics has proved that it has a re... ver más
Revista: Aerospace

 
Haotian Luo, Weijun Pan, Yidi Wang and Yuming Luo    
Today, aviation has grown significantly in importance. However, the challenge of flight delays has become increasingly severe due to the need for safe separation between aircraft to mitigate wake turbulence effects. The primary emphasis of this investiga... ver más
Revista: Aerospace

 
Omkar Walvekar and Satyanarayanan Chakravarthy    
A conceptual framework is presented to determine the improvement in the aerodynamic performance of a canard aircraft fitted with distributed propellers along its main wing. A preliminary study is described with four airframe?propeller configurations pred... ver más
Revista: Aerospace