Redirigiendo al acceso original de articulo en 16 segundos...
Inicio  /  Aerospace  /  Vol: 3 Par: 2 (2016)  /  Artículo
ARTÍCULO
TITULO

Theoretical and Numerical Modeling of Acoustic Metamaterials for Aeroacoustic Applications

Umberto Iemma    

Resumen

The advent, during the first decade of the 21st century, of the concept of acoustic metamaterial has disclosed an incredible potential of development for breakthrough technologies. Unfortunately, the extension of the same concepts to aeroacoustics has turned out to be not a trivial task, because of the different structure of the governing equations, characterized by the presence of the background aerodynamic convection. Some of the approaches recently introduced to circumvent the problem are biased by a fundamental assumption that makes the actual realization of devices extremely unlikely: the metamaterial should guarantee an adapted background aerodynamic convection in order to modify suitably the acoustic field and obtain the desired effect, thus implying the porosity of the cloaking device. In the present paper, we propose an interpretation of the metamaterial design that removes this unlikely assumption, focusing on the identification of an aerodynamically-impermeable metamaterial capable of reproducing the surface impedance profile required to achieve the desired scattering abatement. The attention is focused on a moving obstacle impinged by an acoustic perturbation induced by a co-moving source. The problem is written in a frame of reference rigidly connected to the moving object to couple the convective wave equation in the hosting medium with the inertially-anisotropic wave operator within the cloak. The problem is recast in an integral form and numerically solved through a boundary-field element method. The matching of the local wave vector is used to derive a convective design of the metamaterial applicable to the specific problem analyzed. Preliminary numerical results obtained under the simplifying assumption of a uniform aerodynamic flow reveal a considerable enhancement of the masking capability of the convected design. The numerical method developed shows a remarkable computational efficiency, completing a simulation of the entire field in a few minutes on mid-end workstations. The results are re-interpreted in term of boundary impedance, assuming a locally-reacting behavior of the outer boundary of the cloaking layer. The formulation is currently being extended to the analysis of arbitrarily complex external flows in order to remove the limitation of the background uniform stream in the host.

 Artículos similares

       
 
Haopeng Zhang, Runhan Li, Kuan Lu, Xiaohui Gu, Ruijuan Sang and Donglin Li    
The twin-spool rotor-bearing system plays a crucial role in the aero-engine. The potential manufacturing defect, assembly error, and abnormal working loads in the rotor-bearing system can induce multiple rotor failures, such as bolt looseness and rub imp... ver más
Revista: Applied Sciences

 
Zhen Xu, Lianjiang Xu, Junfeng Sun, Meihong Liu, Taohong Liao and Xiangping Hu    
Flexible support cylindrical gas film seals (CGFSs) adapt well to rotor whirling and have a good gas lubrication effect during thermal deformation. However, when a CGFS operates under the ?three high? (high interface slip speed, high-pressure differentia... ver más
Revista: Aerospace

 
Wenjie Shen, Suofang Wang and Xiaodi Liang    
Impellers are utilized to increase pressure to ensure that a radial pre-swirl system can provide sufficient cooling airflow to the turbine blades. In the open literature, the pressurization mechanism of the impellers was investigated. However, the effect... ver más
Revista: Aerospace

 
Jayson Craig Small and Liwei Zhang    
The performance of detonation engines depends on propellant injectors. This study investigates a fluidic-valve injector mounted to a detonation tube. The injector is equipped with a recessed cavity connecting to the fuel plenum. After verifying the theor... ver más
Revista: Aerospace

 
Peizhen Zhang, Xiaofeng Yin, Bin Wang and Ziyi Feng    
The construction of wind farm pilings, submarine pipelines, and underwater submarines involves multiple cylinders. However, there is currently a lack of economic research on predicting the mechanism and characteristics of mutual coupling of acoustic scat... ver más