Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Aerospace  /  Vol: 10 Par: 10 (2023)  /  Artículo
ARTÍCULO
TITULO

The Aerodynamic Performance of a Novel Overlapping Octocopter Considering Horizontal Wind

Yao Lei    
Jie Wang and Yazhou Li    

Resumen

This paper investigates the aerodynamic performance of an overlapping octocopter with the effect of horizontal wind ranging from 0 to 4 m/s using both low-speed wind tunnel tests and numerical simulations. The hovering efficiency and the potential control strategies of the octocopter under the effect of horizontal wind are also validated using blade element momentum theory. The velocity distribution, rotor pressure and vortex of the downwash flow with the horizontal wind are presented using the Computational Fluid Dynamics (CFD) method. Finally, wind tunnel tests were performed to obtain the thrust and power consumption with the rotor speed ranging from 1500 to 2200 rpm for horizontal winds at 0 m/s, 2.5 m/s and 4 m/s. The results showed that horizontal wind decreased the flight efficiency of the planar octocopter and had little effect on the coaxial octocopter. It is also interesting to note that horizontal wind is beneficial for thrust increments at a higher rotor speed and power decrements at a lower rotor speed for the overlapping octocopter. Specifically, the horizontal wind of 2.5 m/s for a lower rpm is presented with a power decrement with proper aerodynamic interference between the rotor blades. Additionally, the overlapping octocopter obtains a higher hover efficiency at 4 m/s compared to traditional octocopters, which is more suitable for flying in a cross wind with a more compact structure.

 Artículos similares

       
 
Michael Finigian, Peter Apostolos Kavounas, Ian Ho, Conor Cian Smith, Adam Witusik, Andrew Hopwood, Camron Avent, Brandon Ragasa and Brian Roth    
Unmanned aerial vehicles (UAVs) have already proven valuable for intelligence, search, and reconnaissance missions; however, their integration into manned aircraft to augment existing capabilities is still an emerging field. This paper describes the desi... ver más
Revista: Aerospace

 
Junyao Zhang, Hao Zhan and Baigang Mi    
The submerged inlet exhibits good stealth characteristics and lower drag, but it has a low total pressure recovery coefficient and high distortion rate, which limits its widespread application. This paper proposes a vortex diverter aimed at enhancing the... ver más
Revista: Aerospace

 
Mirko Dinulovic, Aleksandar Benign and Bo?ko Ra?uo    
In the present work, the potential application of machine learning techniques in the flutter prediction of composite materials missile fins is investigated. The flutter velocity data set required for different fin aerodynamic geometries and materials is ... ver más
Revista: Aerospace

 
Saile Zhang, Qingzhen Yang, Rui Wang and Xufei Wang    
The use of traditional optimization methods in engineering design problems, specifically in aerodynamic and infrared stealth optimization for engine nozzles, requires a large number of objective function evaluations, therefore introducing a considerable ... ver más
Revista: Aerospace

 
Aristia L. Philippou, Pavlos K. Zachos and David G. MacManus    
High-speed air intakes often exhibit intricate flow patterns, with a specific type of flow instability known as ?buzz?, characterized by unsteady shock oscillations at the inlet. This paper presents a comprehensive review of prior research, focused on un... ver más
Revista: Aerospace