REVISTA
AI

   
Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  AI  /  Vol: 3 Par: 2 (2022)  /  Artículo
ARTÍCULO
TITULO

Hybrid Deep Learning Techniques for Predicting Complex Phenomena: A Review on COVID-19

Mohammad (Behdad) Jamshidi    
Sobhan Roshani    
Fatemeh Daneshfar    
Ali Lalbakhsh    
Saeed Roshani    
Fariborz Parandin    
Zahra Malek    
Jakub Talla    
Zdenek Peroutka    
Alireza Jamshidi    
Farimah Hadjilooei and Pedram Lalbakhsh    

Resumen

Complex phenomena have some common characteristics, such as nonlinearity, complexity, and uncertainty. In these phenomena, components typically interact with each other and a part of the system may affect other parts or vice versa. Accordingly, the human brain, the Earth?s global climate, the spreading of viruses, the economic organizations, and some engineering systems such as the transportation systems and power grids can be categorized into these phenomena. Since both analytical approaches and AI methods have some specific characteristics in solving complex problems, a combination of these techniques can lead to new hybrid methods with considerable performance. This is why several types of research have recently been conducted to benefit from these combinations to predict the spreading of COVID-19 and its dynamic behavior. In this review, 80 peer-reviewed articles, book chapters, conference proceedings, and preprints with a focus on employing hybrid methods for forecasting the spreading of COVID-19 published in 2020 have been aggregated and reviewed. These documents have been extracted from Google Scholar and many of them have been indexed on the Web of Science. Since there were many publications on this topic, the most relevant and effective techniques, including statistical models and deep learning (DL) or machine learning (ML) approach, have been surveyed in this research. The main aim of this research is to describe, summarize, and categorize these effective techniques considering their restrictions to be used as trustable references for scientists, researchers, and readers to make an intelligent choice to use the best possible method for their academic needs. Nevertheless, considering the fact that many of these techniques have been used for the first time and need more evaluations, we recommend none of them as an ideal way to be used in their project. Our study has shown that these methods can hold the robustness and reliability of statistical methods and the power of computation of DL ones.

 Artículos similares

       
 
Abdelghani Azri, Adil Haddi and Hakim Allali    
Collaborative filtering (CF), a fundamental technique in personalized Recommender Systems, operates by leveraging user?item preference interactions. Matrix factorization remains one of the most prevalent CF-based methods. However, recent advancements in ... ver más
Revista: Information

 
Jiacun Wang, Guipeng Xi, Xiwang Guo, Shujin Qin and Henry Han    
The scheduling of disassembly lines is of great importance to achieve optimized productivity. In this paper, we address the Hybrid Disassembly Line Balancing Problem that combines linear disassembly lines and U-shaped disassembly lines, considering multi... ver más
Revista: Information

 
Tao Tang, Yuting Cui, Rui Feng and Deliang Xiang    
With the development of deep learning in the field of computer vision, convolutional neural network models and attention mechanisms have been widely applied in SAR image target recognition. The improvement of convolutional neural network attention in exi... ver más
Revista: Information

 
Mingxin Zou, Yanqing Zhou, Xinhua Jiang, Julin Gao, Xiaofang Yu and Xuelei Ma    
Field manual labor behavior recognition is an important task that applies deep learning algorithms to industrial equipment for capturing and analyzing people?s behavior during field labor. In this study, we propose a field manual labor behavior recogniti... ver más
Revista: Applied Sciences

 
Diana Bratic, Marko ?apina, Denis Jurecic and Jana ?iljak Gr?ic    
This paper addresses the challenges associated with the centralized storage of educational materials in the context of a fragmented and disparate database. In response to the increasing demands of modern education, efficient and accessible retrieval of m... ver más