REVISTA
AI

   
Redirigiendo al acceso original de articulo en 21 segundos...
Inicio  /  AI  /  Vol: 1 Par: 1 (2020)  /  Artículo
ARTÍCULO
TITULO

Deep Learning for Lung Cancer Nodules Detection and Classification in CT Scans

Diego Riquelme and Moulay A. Akhloufi    

Resumen

Detecting malignant lung nodules from computed tomography (CT) scans is a hard and time-consuming task for radiologists. To alleviate this burden, computer-aided diagnosis (CAD) systems have been proposed. In recent years, deep learning approaches have shown impressive results outperforming classical methods in various fields. Nowadays, researchers are trying different deep learning techniques to increase the performance of CAD systems in lung cancer screening with computed tomography. In this work, we review recent state-of-the-art deep learning algorithms and architectures proposed as CAD systems for lung cancer detection. They are divided into two categories?(1) Nodule detection systems, which from the original CT scan detect candidate nodules; and (2) False positive reduction systems, which from a set of given candidate nodules classify them into benign or malignant tumors. The main characteristics of the different techniques are presented, and their performance is analyzed. The CT lung datasets available for research are also introduced. Comparison between the different techniques is presented and discussed.

 Artículos similares

       
 
Ryota Higashimoto, Soh Yoshida and Mitsuji Muneyasu    
This paper addresses the performance degradation of deep neural networks caused by learning with noisy labels. Recent research on this topic has exploited the memorization effect: networks fit data with clean labels during the early stages of learning an... ver más
Revista: Applied Sciences

 
Xie Lian, Xiaolong Hu, Liangsheng Shi, Jinhua Shao, Jiang Bian and Yuanlai Cui    
The parameters of the GR4J-CemaNeige coupling model (GR4neige) are typically treated as constants. However, the maximum capacity of the production store (parX1) exhibits time-varying characteristics due to climate variability and vegetation coverage chan... ver más
Revista: Water

 
Yongen Lin, Dagang Wang, Tao Jiang and Aiqing Kang    
Reliable streamflow forecasting is a determining factor for water resource planning and flood control. To better understand the strengths and weaknesses of newly proposed methods in streamflow forecasting and facilitate comparisons of different research ... ver más
Revista: Water

 
Hamed Raoofi, Asa Sabahnia, Daniel Barbeau and Ali Motamedi    
Traditional methods of supervision in the construction industry are time-consuming and costly, requiring significant investments in skilled labor. However, with advancements in artificial intelligence, computer vision, and deep learning, these methods ca... ver más

 
Nan Lao Ywet, Aye Aye Maw, Tuan Anh Nguyen and Jae-Woo Lee    
Urban Air Mobility (UAM) emerges as a transformative approach to address urban congestion and pollution, offering efficient and sustainable transportation for people and goods. Central to UAM is the Operational Digital Twin (ODT), which plays a crucial r... ver más
Revista: Aerospace