Resumen
This paper investigates the issue of balance control for reaction-wheeled inverted pendulum-type Cubli Rovers on asteroids, and an adaptive control scheme is proposed via the prescribed performance control technique. The main feature lies in the fact that the transient behavior is satisfied which is required critically in the environment of asteroids. The attitude model of reaction-wheeled inverted pendulum-type Cubli Rovers is first constructed by virtue of the momentum moment theorem and Eulerian kinematics. Based on that, the gravitational field in the asteroid is described and the avoiding jumping condition is analyzed. Then, an adaptive prescribed performance control (APPC) method is proposed to obtain the fine tracking performance of the equilibrium error such that the inverted pendulum-type Cubli Rovers achieve the self-balancing motion. The proposed method is capable of ensuring the tracking errors inside the preset boundary functions, and the asymptotic stability of all states in the closed-loop system is guaranteed via the Lyapunov stability theory. The simulation and comparison results on the environment of asteroids verify the effectiveness and superiority of the presented control law.