REVISTA
AI

   
Redirigiendo al acceso original de articulo en 19 segundos...
Inicio  /  AI  /  Vol: 2 Par: 4 (2021)  /  Artículo
ARTÍCULO
TITULO

A Performance Comparison and Enhancement of Animal Species Detection in Images with Various R-CNN Models

Mai Ibraheam    
Kin Fun Li    
Fayez Gebali and Leonard E. Sielecki    

Resumen

Object detection is one of the vital and challenging tasks of computer vision. It supports a wide range of applications in real life, such as surveillance, shipping, and medical diagnostics. Object detection techniques aim to detect objects of certain target classes in a given image and assign each object to a corresponding class label. These techniques proceed differently in network architecture, training strategy and optimization function. In this paper, we focus on animal species detection as an initial step to mitigate the negative impacts of wildlife?human and wildlife?vehicle encounters in remote wilderness regions and on highways. Our goal is to provide a summary of object detection techniques based on R-CNN models, and to enhance the performance of detecting animal species in accuracy and speed, by using four different R-CNN models and a deformable convolutional neural network. Each model is applied on three wildlife datasets, results are compared and analyzed by using four evaluation metrics. Based on the evaluation, an animal species detection system is proposed.

 Artículos similares

       
 
Zahid Masood, Muhammad Usama, Shahroz Khan, Konstantinos Kostas and Panagiotis D. Kaklis    
Generative models offer design diversity but tend to be computationally expensive, while non-generative models are computationally cost-effective but produce less diverse and often invalid designs. However, the limitations of non-generative models can be... ver más

 
Feifei He, Qinjuan Wan, Yongqiang Wang, Jiang Wu, Xiaoqi Zhang and Yu Feng    
Accurately predicting hydrological runoff is crucial for water resource allocation and power station scheduling. However, there is no perfect model that can accurately predict future runoff. In this paper, a daily runoff prediction method with a seasonal... ver más
Revista: Water

 
Jan Kolínský, Tomá? Prá?il, Ladislav Socha, Jana Svi?elová, Karel Gryc, Josef Häusler and Martin Dvorák    
The present paper describes a comparison of the efficiency of different types of rotors used in the refining of aluminium melt at a foundry degassing unit (FDU). Physical modelling was used to obtain data for six different rotor types under defined exper... ver más
Revista: Applied Sciences

 
Ujwal Sharma, Uma Shankar Medasetti, Taher Deemyad, Mustafa Mashal and Vaibhav Yadav    
This review paper addresses the escalating operation and maintenance costs of nuclear power plants, primarily attributed to rising labor costs and intensified competition from renewable energy sources. The paper proposes a paradigm shift towards a techno... ver más
Revista: Applied Sciences

 
Vladimir Ulansky and Ahmed Raza    
Maintenance strategies play a crucial role in ensuring the reliability and performance of complex systems. Imperfect inspections, characterized by the probabilities of false positives and false negatives, significantly impact the effectiveness of mainten... ver más
Revista: Aerospace