Resumen
Wing-in-Ground (WIG) effect aircraft are gaining attention for their potential in reducing environmental impact. However, optimising wing planforms based solely on aerodynamics might improve performance while compromising static height stability of WIG aircraft. This study investigates the effects of planar and nonplanar wing planform optimisation for regional transport ground effect aircraft. Three distinct multiobjective wing planform optimisations are explored: planar wing optimisation, nonplanar wing optimisation, and nonplanar wingtip optimisation. These optimisations assess the impact on both aerodynamic efficiency and static height stability characteristics of a wing planform in ground effect, at three different flying altitudes. In extreme ground effect, the Pareto set includes wings with negative spanwise camber, enhancing both cushion sensation and aerodynamic efficiency by effectively utilizing ground effect, thus proving advantageous over planar wing configurations.