Resumen
As the frozen soil in the South Pole region of the Moon is an important water resource, the operation of drilling and retrieving samples of the frozen soil in this region will be a crucial task for us to accomplish in future deep-space exploration. Thus, this paper investigated the effects of the increasing temperature and heat transfer between the drilling tools and the simulated lunar soil to minimize the degradation of the frozen soil samples during drilling due to the increased temperature. Specifically, the discrete element method was adopted and the heat transfer parameters of the discrete element particles were calibrated based on the equivalent heat transfer of the particle system. Moreover, a lunar soil particle system was developed for the simulations. Under the current working conditions with reasonable parameters, the maximum increase in the drill bit temperature was about 60 °C. Overall, the simulation results were consistent with the experimental results, and further analysis revealed that the flow of lunar soil can effectively take away thermal, which is also one of the reasons why the simulated lunar soil particles are in a high-temperature state at the front of the drilling tool.