Resumen
In this study, a finite element approach was used to analyze the PRSEUS-based undamaged wing structure of a civil aircraft with a blended-wing-body configuration. The displacement, stress, and strain distribution of the PRSEUS wing structure were studied under an aerodynamic load with three different values of the factor of safety. This was used as a reference to study the response of the same wing configuration, first with a single stringer, where failure was initiated at the fourth loading value, while the second loading condition was sufficient to initiate failure in the triple-stringer damage wing. In addition, damage to rib components was investigated, and it was shown that damage to a single rib and double rib did not impose significant risks to the structural integrity of the wing structure, and the results have shown that the values of displacement, stress, and strain do not differ much from those of the undamaged wing, even as the length of the rib damage is increased.