Resumen
In recent years, with the rapid development of computer technology and artificial intelligence design technology, multiple possible design solutions can be quickly generated by transforming the experience and knowledge of structural design into computer executable rules and algorithms. To achieve intelligent design of aircraft engines, this paper proposes an encoding model for the turbine rotor structure of aircraft engines using geometric encoding technology. The turbine rotor structure of aircraft engines is divided into several units according to geometric similarity types, these units continue to be divided into attribute sets according to their functional types, connection relationships, and material properties. These attribute sets can be encoded using geometric encoding technology. The experiment simulated that these codes, for the point cloud modeling of turbine rotor structure, can be quickly achieved and they combine various algorithms to display the point cloud model of the turbine rotor in the Microsoft Visual studio MFC class library. The results show that by creating geometric codes for the turbine rotor of aircraft engines, it is possible to quickly create and display point cloud models of the turbine rotor structure, laying the foundation for subsequent application of machine learning to solve and find the optimal design solution.