REVISTA
AI

   
Redirigiendo al acceso original de articulo en 16 segundos...
Inicio  /  AI  /  Vol: 3 Par: 2 (2022)  /  Artículo
ARTÍCULO
TITULO

A Review of the Potential of Artificial Intelligence Approaches to Forecasting COVID-19 Spreading

Mohammad Behdad Jamshidi    
Sobhan Roshani    
Jakub Talla    
Ali Lalbakhsh    
Zdenek Peroutka    
Saeed Roshani    
Fariborz Parandin    
Zahra Malek    
Fatemeh Daneshfar    
Hamid Reza Niazkar    
Saeedeh Lotfi    
Asal Sabet    
Mojgan Dehghani    
Farimah Hadjilooei    
Maryam S. Sharifi-Atashgah and Pedram Lalbakhsh    

Resumen

The spread of SARS-CoV-2 can be considered one of the most complicated patterns with a large number of uncertainties and nonlinearities. Therefore, analysis and prediction of the distribution of this virus are one of the most challenging problems, affecting the planning and managing of its impacts. Although different vaccines and drugs have been proved, produced, and distributed one after another, several new fast-spreading SARS-CoV-2 variants have been detected. This is why numerous techniques based on artificial intelligence (AI) have been recently designed or redeveloped to forecast these variants more effectively. The focus of such methods is on deep learning (DL) and machine learning (ML), and they can forecast nonlinear trends in epidemiological issues appropriately. This short review aims to summarize and evaluate the trustworthiness and performance of some important AI-empowered approaches used for the prediction of the spread of COVID-19. Sixty-five preprints, peer-reviewed papers, conference proceedings, and book chapters published in 2020 were reviewed. Our criteria to include or exclude references were the performance of these methods reported in the documents. The results revealed that although methods under discussion in this review have suitable potential to predict the spread of COVID-19, there are still weaknesses and drawbacks that fall in the domain of future research and scientific endeavors.

 Artículos similares

       
 
Ze Liu, Jingzhao Zhou, Xiaoyang Yang, Zechuan Zhao and Yang Lv    
Water resource modeling is an important means of studying the distribution, change, utilization, and management of water resources. By establishing various models, water resources can be quantitatively described and predicted, providing a scientific basi... ver más
Revista: Water

 
Mattia Chiappini, Carla Dei, Ettore Micheletti, Emilia Biffi and Fabio Alexander Storm    
In recent years, the number of applications of virtual reality (VR) for the Autism spectrum disorder (ASD) population has increased and has become one of the most suitable tools to address the psychological needs of these individuals. The present scoping... ver más
Revista: Applied Sciences

 
Achini Adikari, Su Nguyen, Rashmika Nawaratne, Daswin De Silva and Damminda Alahakoon    
The proliferation of online hotel review platforms has prompted decision-makers in the hospitality sector to acknowledge the significance of extracting valuable information from this vast source. While contemporary research has primarily focused on extra... ver más
Revista: Applied Sciences

 
Yumei Zhang, Jie Zhang, Ye Li, Dan Yao, Yue Zhao, Yi Ai, Weijun Pan and Jiang Li    
Acoustic metamaterials (AMs) composed of periodic artificial structures have extraordinary sound wave manipulation capabilities compared with traditional acoustic materials, and they have attracted widespread research attention. The sound insulation perf... ver más
Revista: Acoustics

 
Chen-Jui Yu, Shiow-Chwen Tsai, Yi-Hung Liao, Chung-Yu Chen and Kuo-Cheng Wu    
This article explores the potential benefits of intervention with acute hypoxia cycling training protocols on player sports performances, including different interventions and supplementations.
Revista: Applied Sciences