REVISTA
AI

   
Redirigiendo al acceso original de articulo en 16 segundos...
Inicio  /  AI  /  Vol: 2 Par: 4 (2021)  /  Artículo
ARTÍCULO
TITULO

Deep Learning Models for Automatic Makeup Detection

Theiab Alzahrani    
Baidaa Al-Bander and Waleed Al-Nuaimy    

Resumen

Makeup can disguise facial features, which results in degradation in the performance of many facial-related analysis systems, including face recognition, facial landmark characterisation, aesthetic quantification and automated age estimation methods. Thus, facial makeup is likely to directly affect several real-life applications such as cosmetology and virtual cosmetics recommendation systems, security and access control, and social interaction. In this work, we conduct a comparative study and design automated facial makeup detection systems leveraging multiple learning schemes from a single unconstrained photograph. We have investigated and studied the efficacy of deep learning models for makeup detection incorporating the use of transfer learning strategy with semi-supervised learning using labelled and unlabelled data. First, during the supervised learning, the VGG16 convolution neural network, pre-trained on a large dataset, is fine-tuned on makeup labelled data. Secondly, two unsupervised learning methods, which are self-learning and convolutional auto-encoder, are trained on unlabelled data and then incorporated with supervised learning during semi-supervised learning. Comprehensive experiments and comparative analysis have been conducted on 2479 labelled images and 446 unlabelled images collected from six challenging makeup datasets. The obtained results reveal that the convolutional auto-encoder merged with supervised learning gives the best makeup detection performance achieving an accuracy of 88.33% and area under ROC curve of 95.15%. The promising results obtained from conducted experiments reveal and reflect the efficiency of combining different learning strategies by harnessing labelled and unlabelled data. It would also be advantageous to the beauty industry to develop such computational intelligence methods.

 Artículos similares

       
 
Seokjoon Kwon, Jae-Hyeon Park, Hee-Deok Jang, Hyunwoo Nam and Dong Eui Chang    
Deep learning algorithms are widely used for pattern recognition in electronic noses, which are sensor arrays for gas mixtures. One of the challenges of using electronic noses is sensor drift, which can degrade the accuracy of the system over time, even ... ver más
Revista: Applied Sciences

 
Shihao Ma, Jiao Wu, Zhijun Zhang and Yala Tong    
Addressing the limitations, including low automation, slow recognition speed, and limited universality, of current mudslide disaster detection techniques in remote sensing imagery, this study employs deep learning methods for enhanced mudslide disaster d... ver más
Revista: Applied Sciences

 
Ryota Higashimoto, Soh Yoshida and Mitsuji Muneyasu    
This paper addresses the performance degradation of deep neural networks caused by learning with noisy labels. Recent research on this topic has exploited the memorization effect: networks fit data with clean labels during the early stages of learning an... ver más
Revista: Applied Sciences

 
Giorgio Lazzarinetti, Riccardo Dondi, Sara Manzoni and Italo Zoppis    
Solving combinatorial problems on complex networks represents a primary issue which, on a large scale, requires the use of heuristics and approximate algorithms. Recently, neural methods have been proposed in this context to find feasible solutions for r... ver más
Revista: Algorithms

 
Luis M. de Campos, Juan M. Fernández-Luna, Juan F. Huete, Francisco J. Ribadas-Pena and Néstor Bolaños    
In the context of academic expert finding, this paper investigates and compares the performance of information retrieval (IR) and machine learning (ML) methods, including deep learning, to approach the problem of identifying academic figures who are expe... ver más
Revista: Algorithms