Redirigiendo al acceso original de articulo en 19 segundos...
Inicio  /  Aerospace  /  Vol: 8 Par: 3 (2021)  /  Artículo
ARTÍCULO
TITULO

Remote Sensing Image Super-Resolution for the Visual System of a Flight Simulator: Dataset and Baseline

Wenyi Ge    
Zhitao Wang    
Guigui Wang    
Shihan Tan and Jianwei Zhang    

Resumen

High-resolution remote sensing images are the key data source for the visual system of a flight simulator for training a qualified pilot. However, due to hardware limitations, it is an expensive task to collect spectral and spatial images at very high resolutions. In this work, we try to tackle this issue with another perspective based on image super-resolution (SR) technology. First, we present a new ultra-high-resolution remote sensing image dataset named Airport80, which is captured from the airspace near various airports. Second, a deep learning baseline is proposed by applying the generative and adversarial mechanism, which is able to reconstruct a high-resolution image during a single image super-resolution. Experimental results for our benchmark demonstrate the effectiveness of the proposed network and show it has reached satisfactory performances.

 Artículos similares

       
 
Linhua Zhang, Ning Xiong, Wuyang Gao and Peng Wu    
With the exponential growth of remote sensing images in recent years, there has been a significant increase in demand for micro-target detection. Recently, effective detection methods for small targets have emerged; however, for micro-targets (even fewer... ver más
Revista: Information

 
Hang Li, Shengjie Zhao and Hao Deng    
The extraction of community-scale green infrastructure (CSGI) poses challenges due to limited training data and the diverse scales of the targets. In this paper, we reannotate a training dataset of CSGI and propose a three-stage transfer learning method ... ver más
Revista: Information

 
Junyi Chen, Yanyun Shen, Yinyu Liang, Zhipan Wang and Qingling Zhang    
Aircraft detection in SAR images of airports remains crucial for continuous ground observation and aviation transportation scheduling in all weather conditions, but low resolution and complex scenes pose unique challenges. Existing methods struggle with ... ver más
Revista: Applied Sciences

 
Rossana Caroni, Monica Pinardi, Gary Free, Daniela Stroppiana, Lorenzo Parigi, Giulio Tellina, Mariano Bresciani, Clément Albergel and Claudia Giardino    
A study was carried out to investigate the effects of wildfires on lake water quality using a source dataset of 2024 lakes worldwide, covering different lake types and ecological settings. Satellite-derived datasets (Lakes_cci and Fire_cci) were used and... ver más
Revista: Applied Sciences

 
Shihao Ma, Jiao Wu, Zhijun Zhang and Yala Tong    
Addressing the limitations, including low automation, slow recognition speed, and limited universality, of current mudslide disaster detection techniques in remote sensing imagery, this study employs deep learning methods for enhanced mudslide disaster d... ver más
Revista: Applied Sciences