Redirigiendo al acceso original de articulo en 21 segundos...
Inicio  /  Aerospace  /  Vol: 10 Par: 4 (2023)  /  Artículo
ARTÍCULO
TITULO

Deep Learning in Air Traffic Management (ATM): A Survey on Applications, Opportunities, and Open Challenges

Euclides Carlos Pinto Neto    
Derick Moreira Baum    
Jorge Rady de Almeida    
Jr.    
João Batista Camargo    
Jr. and Paulo Sergio Cugnasca    

Resumen

Currently, the increasing number of daily flights emphasizes the importance of air transportation. Furthermore, Air Traffic Management (ATM) enables air carriers to operate safely and efficiently through the multiple services provided. Advanced analytic solutions have demonstrated the potential to solve complex problems in several domains, and Deep Learning (DL) has attracted attention due to its impressive results and disruptive capabilities. The adoption of DL models in ATM solutions enables new cognitive services that have never been considered before. The main goal of this research is to present a comprehensive review of state-of-the-art Deep Learning (DL) solutions for Air Traffic Management (ATM). This review focuses on describing applications, identifying opportunities, and highlighting open challenges to foster the evolution of ATM systems. To accomplish this, we discuss the fundamental topics of DL and ATM and categorize the contributions based on different approaches. First, works are grouped based on the DL approach adopted. Then, future directions are identified based on the ATM solution area. Finally, open challenges are listed for both DL applications and ATM solutions. This article aims to support the community by identifying research problems to be faced in the future.

 Artículos similares

       
 
Ryota Higashimoto, Soh Yoshida and Mitsuji Muneyasu    
This paper addresses the performance degradation of deep neural networks caused by learning with noisy labels. Recent research on this topic has exploited the memorization effect: networks fit data with clean labels during the early stages of learning an... ver más
Revista: Applied Sciences

 
Xie Lian, Xiaolong Hu, Liangsheng Shi, Jinhua Shao, Jiang Bian and Yuanlai Cui    
The parameters of the GR4J-CemaNeige coupling model (GR4neige) are typically treated as constants. However, the maximum capacity of the production store (parX1) exhibits time-varying characteristics due to climate variability and vegetation coverage chan... ver más
Revista: Water

 
Yongen Lin, Dagang Wang, Tao Jiang and Aiqing Kang    
Reliable streamflow forecasting is a determining factor for water resource planning and flood control. To better understand the strengths and weaknesses of newly proposed methods in streamflow forecasting and facilitate comparisons of different research ... ver más
Revista: Water

 
Hamed Raoofi, Asa Sabahnia, Daniel Barbeau and Ali Motamedi    
Traditional methods of supervision in the construction industry are time-consuming and costly, requiring significant investments in skilled labor. However, with advancements in artificial intelligence, computer vision, and deep learning, these methods ca... ver más

 
Nan Lao Ywet, Aye Aye Maw, Tuan Anh Nguyen and Jae-Woo Lee    
Urban Air Mobility (UAM) emerges as a transformative approach to address urban congestion and pollution, offering efficient and sustainable transportation for people and goods. Central to UAM is the Operational Digital Twin (ODT), which plays a crucial r... ver más
Revista: Aerospace