Resumen
This paper deals with the control of lighter-than-air vehicles, more specifically the design of an integrated guidance, navigation and control (GNC) scheme that is capable of navigating an airship through a series of constant-altitude, planar waypoints. Two guidance schemes are introduced, a track-specific guidance law and a proportional navigation guidance law, that provide the required signals to the corresponding controllers based on the airship position relative to a target waypoint. A novel implementation of the extended Kalman filter, namely the scheduled extended Kalman filter, estimates the required states and wind speed to enhance the performance of the track-specific guidance law in the presence of time-varying wind. The performance of the GNC system is tested using a high fidelity nonlinear dynamic simulation for a variety of flying conditions. Representative results illustrate the performance of the integrated system for chosen flight conditions.