Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Aerospace  /  Vol: 9 Par: 1 (2022)  /  Artículo
ARTÍCULO
TITULO

Multi-Objective Optimization of Low Reynolds Number Airfoil Using Convolutional Neural Network and Non-Dominated Sorting Genetic Algorithm

Abu Bakar    
Ke Li    
Haobo Liu    
Ziqi Xu    
Marco Alessandrini and Dongsheng Wen    

Resumen

The airfoil is the prime component of flying vehicles. For low-speed flights, low Reynolds number airfoils are used. The characteristic of low Reynolds number airfoils is a laminar separation bubble and an associated drag rise. This paper presents a framework for the design of a low Reynolds number airfoil. The contributions of the proposed research are twofold. First, a convolutional neural network (CNN) is designed for the aerodynamic coefficient prediction of low Reynolds number airfoils. Data generation is discussed in detail and XFOIL is selected to obtain aerodynamic coefficients. The performance of the CNN is evaluated using different learning rate schedulers and adaptive learning rate optimizers. The trained model can predict the aerodynamic coefficients with high accuracy. Second, the trained model is used with a non-dominated sorting genetic algorithm (NSGA-II) for multi-objective optimization of the low Reynolds number airfoil at a specific angle of attack. A similar optimization is performed using NSGA-II directly calling XFOIL, to obtain the aerodynamic coefficients. The Pareto fronts of both optimizations are compared, and it is concluded that the proposed CNN can replicate the actual Pareto in considerably less time.

 Artículos similares

       
 
Vedat Dogan and Steven Prestwich    
In a multi-objective optimization problem, a decision maker has more than one objective to optimize. In a bilevel optimization problem, there are the following two decision-makers in a hierarchy: a leader who makes the first decision and a follower who r... ver más
Revista: Algorithms

 
Claudia Cavallaro, Carolina Crespi, Vincenzo Cutello, Mario Pavone and Francesco Zito    
This paper introduces an agent-based model grounded in the ACO algorithm to investigate the impact of partitioning ant colonies on algorithmic performance. The exploration focuses on understanding the roles of group size and number within a multi-objecti... ver más
Revista: Algorithms

 
Yaxin Dong, Hongxiang Ren, Yuzhu Zhu, Rui Tao, Yating Duan and Nianjun Shao    
To effectively address the increase in maritime accidents and the challenges posed by the trend toward larger ships for maritime safety, it is crucial to rationally allocate the limited maritime search and rescue (MSAR) resources and enhance accident res... ver más

 
Meng Ma, Zhirong Zhong, Zhi Zhai and Ruobin Sun    
There are hundreds of various sensors used for online Prognosis and Health Management (PHM) of LREs. Inspired by the fact that a limited number of key sensors are selected for inflight control purposes in LRE, it is practical to optimal placement of redu... ver más
Revista: Aerospace

 
Yan Xu, Yilong Yang, He Huang, Gang Chen, Guangxing Li and Huajian Chen    
To improve the cushioning performance of soft-landing systems, a novel origami-inspired combined cushion airbag is proposed. The geometry size, initial pressure, and exhaust vent area of the cushion airbags are designed preliminarily using a theoretical ... ver más
Revista: Aerospace