Redirigiendo al acceso original de articulo en 17 segundos...
Inicio  /  Aerospace  /  Vol: 11 Par: 3 (2024)  /  Artículo
ARTÍCULO
TITULO

Computational Study of Fluidic-Valve Injectors for Detonation Engines

Jayson Craig Small and Liwei Zhang    

Resumen

The performance of detonation engines depends on propellant injectors. This study investigates a fluidic-valve injector mounted to a detonation tube. The injector is equipped with a recessed cavity connecting to the fuel plenum. After verifying the theoretical and numerical framework, three cases (I, II, and III) are analyzed, each representing different combinations of initial injector conditions and fuel supply setups. In all cases, a detonation wave is initiated near the headend of the detonation tube. It propagates through the initial section of the tube and undergoes diffraction and deformation at the flush-wall orifice. Among the considered cases, Case III, featuring a pre-pressurized initial injector flowfield and a total-pressure-inlet boundary, demonstrates the best agreement with the experimental results. It reveals a strong interaction between the longitudinally traveling detonation wave and the transverse propellant plume expanding from the orifice, causing the detonation wave to split. One part continues within the tube, while the other diffracts into the injector, creating a recirculation zone. Shock waves propagate within the injector and reflect at the base of the cavity, generating pressure spikes similar to the experimental observations. However, the contact surface separating the burnt products and fresh propellant reaches only a limited distance into the injector, suggesting a short interruption time and rapid recovery of the propellant supply.

Palabras claves

 Artículos similares

       
 
María Elena Tejeda-del-Cueto, Manuel Alberto Flores-Alfaro, Miguel Toledo-Velázquez, Lorena del Carmen Santos-Cortes, José Hernández-Hernández and Marco Osvaldo Vigueras-Zúñiga    
The objective of this study is to develop a genetic algorithm that uses the IGP parameterization to increase the lift coefficient (CL) of three airfoils to be used on wings of unmanned aerial vehicles (UAVs). The geometry of three baseline airfoils was m... ver más
Revista: Aerospace

 
Zhengwei Wang, Haitao Gu, Jichao Lang and Lin Xing    
This study verifies the effects of deployment parameters on the safe separation of Autonomous Underwater Vehicles (AUVs) and mission payloads. The initial separation phase is meticulously modeled based on computational fluid dynamics (CFD) simulations em... ver más

 
Yunfei Yang, Zhicheng Zhang, Jiapeng Zhao, Bin Zhang, Lei Zhang, Qi Hu and Jianglong Sun    
Resistance serves as a critical performance metric for ships. Swift and accurate resistance prediction can enhance ship design efficiency. Currently, methods for determining ship resistance encompass model tests, estimation techniques, and computational ... ver más

 
Burhan Ul Islam Khan, Khang Wen Goh, Mohammad Shuaib Mir, Nur Fatin Liyana Mohd Rosely, Aabid Ahmad Mir and Mesith Chaimanee    
As the Internet of Things (IoT) continues to revolutionize value-added services, its conventional architecture exhibits persistent scalability and security vulnerabilities, jeopardizing the trustworthiness of IoT-based services. These architectural limit... ver más
Revista: Information

 
Nazrul Azlan Abdul Samat, Norfifah Bachok and Norihan Md Arifin    
The present study aims to offer new numerical solutions and optimisation strategies for the fluid flow and heat transfer behaviour at a stagnation point through a nonlinear sheet that is expanding or contracting in water-based hybrid nanofluids. Most hyb... ver más
Revista: Computation