Resumen
The compound unmanned aircraft is provided with three primary flight modes, which are helicopter flight mode in low forward speed flight, airplane flight mode in high forward speed flight and transition flight mode in middle forward speed flight. For the different flight modes, an appropriate flight control law is the need to ensure good flying qualities. In this paper, a trajectory tracking control system based on the active disturbance rejection controller (ADRC) for the compound unmanned aircraft is proposed to adapt the full flight modes. A flight dynamics model and a Simulink simulation model of the compound unmanned aircraft are developed. The transition flight control strategy is analyzed and synthesized to meet the requirement of control strategy in the full flight modes. The internal uncertainties and external disturbance of the UAV are estimated with an extended state observer to compensate control input. A genetic algorithm-particle swarm optimization (GA-PSO) algorithm is utilized to optimize the controller parameters. The simulation of route tracking and spiral climb with different flight modes is conducted, which demonstrates the tracking ability, interference rejection, robustness and effectiveness of the developed controller in the full flight modes.