Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Aerospace  /  Vol: 10 Par: 6 (2023)  /  Artículo
ARTÍCULO
TITULO

Mathematical Modelling and Fluidic Thrust Vectoring Control of a Delta Wing UAV

Ahsan Tanveer and Sarvat Mushtaq Ahmad    

Resumen

Pitch control of an unmanned aerial vehicle (UAV) using fluidic thrust vectoring (FTV) is a relatively novel technique requiring no moving control surfaces, such as elevators. In this paper, the authors? previous work on the characterization of a static co-flow FTV rig is further validated using the free to pitch dynamic test bench. The deflection of a primary jet after injection of a high-velocity secondary jet was captured using the tuft flow visualization technique, along with the experimental recording of subsequent normal force impinged on the Coanda surface resulting in the pitching moment. The effect of primary and secondary flow velocities on exhaust jet deflection, as well as on the pitch angle of the aircraft, is examined. Aerodynamic gain as well as the inertia of a delta wing UAV test bench are computed through experiments and fed into the equation of motion (e.o.m). The e.o.m developed aided in the design of a model-based PID controller for pitch motion control using the multi-parameter root locus technique. The root locus tuned controller serves as a benchmark controller for performance evaluation of the genetic algorithm (GA) and particle swarm optimization (PSO) tuned controllers. Furthermore, the frequency domain metric of gain and phase margins were also employed to reach a robust control design. Experiments conducted in a simulation environment reveal that PSO-PID results in a better response of the UAV in comparison to the baseline pitch controller.

 Artículos similares

       
 
Sabrina Demarie, Jean Renaud Pycke, Alessia Pizzuti and Veronique Billat    
Pacing strategy refers to the distribution of effort and speed throughout the race to achieve optimal performance. This study aims to understand whether the choice of pacing strategy in swimming depends on the length of competitions and how sex, age, and... ver más
Revista: Applied Sciences

 
Fatma Guesmi, Naoufel Azouz and Jamel Neji    
This paper presents the design and mathematical model of an innovative smart crane, CHAYA-SC, based on the principle of a cable-driven parallel manipulator, as well as its stabilization. This crane is mounted on the airship hold and intended for handling... ver más
Revista: Aerospace

 
Dmitry Nikushchenko, Andrey Maevskiy, Igor Kozhemyakin, Vladimir Ryzhov, Alexander Bondar, Artem Goreliy, Ivan Pechaiko and Ekaterina Nikitina    
Artificial Intelligence (hereinafter referred to as AI) systems have recently found great application and use in various industries, such as data processing, data analysis, and the operation control of marine robotic complexes, etc. In view of the ever-i... ver más

 
Lucas Kwai Hong Lui and C. K. M. Lee    
This research investigated a mathematical model of earphone design with principal component analysis. Along with simplifying the design problem, a predictive model for the sound quality indicators, namely, total harmonic distortion, power of output, rang... ver más
Revista: Applied Sciences

 
Reynaldo J. Silva-Paz, Dante K. Mateo-Mendoza and Amparo Eccoña-Sota    
In Peru, there are more than four thousand plants with medicinal properties, including muña, which helps digestion and improves health. The way to preserve these plants is drying up. The objective of this research was to investigate the coefficient of di... ver más
Revista: ChemEngineering