REVISTA
AI

   
Redirigiendo al acceso original de articulo en 16 segundos...
Inicio  /  AI  /  Vol: 3 Par: 1 (2022)  /  Artículo
ARTÍCULO
TITULO

DPDRC, a Novel Machine Learning Method about the Decision Process for Dimensionality Reduction before Clustering

Jean-Sébastien Dessureault and Daniel Massicotte    

Resumen

This paper examines the critical decision process of reducing the dimensionality of a dataset before applying a clustering algorithm. It is always a challenge to choose between extracting or selecting features. It is not obvious to evaluate the importance of the features since the most popular methods to do it are usually intended for a supervised learning technique process. This paper proposes a novel method called ?Decision Process for Dimensionality Reduction before Clustering? (DPDRC). It chooses the best dimensionality reduction method (selection or extraction) according to the data scientist?s parameters and the profile of the data, aiming to apply a clustering process at the end. It uses a Feature Ranking Process Based on Silhouette Decomposition (FRSD) algorithm, a Principal Component Analysis (PCA) algorithm, and a K-means algorithm along with its metric, the Silhouette Index (SI). This paper presents five scenarios based on different parameters. This research also aims to discuss the impacts, advantages, and disadvantages of each choice that can be made in this unsupervised learning process.

 Artículos similares

       
 
Li Li and Kyung Soo Jun    
River flood routing computes changes in the shape of a flood wave over time as it travels downstream along a river. Conventional flood routing models, especially hydrodynamic models, require a high quality and quantity of input data, such as measured hyd... ver más
Revista: Water

 
MohammadHossein Reshadi, Wen Li, Wenjie Xu, Precious Omashor, Albert Dinh, Scott Dick, Yuntong She and Michael Lipsett    
Anomaly detection in data streams (and particularly time series) is today a vitally important task. Machine learning algorithms are a common design for achieving this goal. In particular, deep learning has, in the last decade, proven to be substantially ... ver más
Revista: Algorithms

 
Gleice Kelly Barbosa Souza, Samara Oliveira Silva Santos, André Luiz Carvalho Ottoni, Marcos Santos Oliveira, Daniela Carine Ramires Oliveira and Erivelton Geraldo Nepomuceno    
Reinforcement learning is an important technique in various fields, particularly in automated machine learning for reinforcement learning (AutoRL). The integration of transfer learning (TL) with AutoRL in combinatorial optimization is an area that requir... ver más
Revista: Algorithms

 
Xin Tian and Yuan Meng    
Multi-relational graph neural networks (GNNs) have found widespread application in tasks involving enhancing knowledge representation and knowledge graph (KG) reasoning. However, existing multi-relational GNNs still face limitations in modeling the excha... ver más
Revista: Applied Sciences

 
Filippo Orazi, Simone Gasperini, Stefano Lodi and Claudio Sartori    
Quantum computing has rapidly gained prominence for its unprecedented computational efficiency in solving specific problems when compared to classical computing counterparts. This surge in attention is particularly pronounced in the realm of quantum mach... ver más
Revista: Information