Resumen
Both noise and structure matter in single image super-resolution (SISR). Recent researches have benefited from a generative adversarial network (GAN) that promotes the development of SISR by recovering photo-realistic images. However, noise and structural distortion are detrimental to SISR. In this paper, we focus on eliminating noise and geometric distortion during super-resolving noisy images. It includes a denoising preprocessing module and a structure-keeping branch. At the same time, the advantages of GAN are still used to generate satisfying details. Especially, on the basis of the original SISR, the gradient branch is developed, and the denoising preprocessing module is designed before the SR branch. Denoising preprocessing eliminates noise by learning the noise distribution and utilizing residual-skip. By restoring the high-resolution(HR) gradient maps and combining gradient loss with space loss to guide the parameter optimization, the gradient branch brings additional structural constraints. Experimental results show that we have obtained better Perceptual Index (PI) and Learned Perceptual Image Patch Similarity (LPIPS) performance on the noisy images, and Peak Signal to Noise Ratio(PSNR) and Structure Similarity (SSIM) are equivalent compared with the most reported SR method combined with DNCNN. Taking the Urban100 dataset with noise intensity in 25 as an example, four indexes of the proposed method are respectively 3.6976(PI), 0.1124(LPIPS), 24.652(PSNR) and 0.9481(SSIM). Combined with the performance under different noise intensity and different datasets reflected in box-and-whiskers plots, the values of PI and LPIPS are the best among all comparison methods, and PSNR and SSIM also achieve equivalent effects. Also, the visual results show that the proposed method of enhancing the super-resolving effect of noisy images through structural information and denoising preprocessing(SNS) is not affected by the noise while preserving the geometric structure in SR processing.