Redirigiendo al acceso original de articulo en 19 segundos...
Inicio  /  Aerospace  /  Vol: 6 Par: 8 (2019)  /  Artículo
ARTÍCULO
TITULO

pyCycle: A Tool for Efficient Optimization of Gas Turbine Engine Cycles

Eric S. Hendricks and Justin S. Gray    

Resumen

Aviation researchers are increasingly focusing on unconventional vehicle designs with tightly integrated propulsion systems to improve overall aircraft performance and reduce environmental impact. Properly analyzing these types of vehicle and propulsion systems requires multidisciplinary models that include many design variables and physics-based analysis tools. This need poses a challenge from a propulsion modeling standpoint because current state-of-the-art thermodynamic cycle analysis tools are not well suited to integration into vehicles level models or to the application of efficient gradient-based optimization techniques that help to counteract the increased computational costs. Therefore, the objective of this research effort was to investigate the development a new thermodynamic cycle analysis code, called pyCycle, to address this limitation and enable design optimization of these new vehicle concepts. This paper documents the development, verification, and application of this code to the design optimization of an advanced turbofan engine. The results of this study show that pyCycle models compute thermodynamic cycle data within 0.03% of an identical Numerical Propulsion System Simulation (NPSS) model. pyCycle also provides more accurate gradient information in three orders of magnitude less computational time by using analytic derivatives. The ability of pyCycle to accurately and efficiently provide this derivative information for gradient-based optimization was found to have a significant benefit on the overall optimization process with wall times at least seven times faster than using finite difference methods around existing tools. The results of this study demonstrate the value of using analytic derivatives for optimization of cycle models, and provide a strong justification for integrating derivatives into other important engineering analyses.

 Artículos similares

       
 
Roberto Scigliano, Valeria De Simone, Roberta Fusaro, Davide Ferretto and Nicole Viola    
The design of integrated and highly efficient solutions for thermal management is a key capability for different aerospace products, ranging from civil aircraft using hydrogen on board to miniaturized satellites. In particular, this paper discloses a nov... ver más
Revista: Aerospace

 
Louis Closson, Christophe Cérin, Didier Donsez and Jean-Luc Baudouin    
This paper aims to provide discernment toward establishing a general framework, dedicated to data analysis and forecasting in smart buildings. It constitutes an industrial return of experience from an industrialist specializing in IoT supported by the ac... ver más
Revista: Information

 
António Pedro Branco, Cátia Vaz and Alexandre P. Francisco    
There are several tools available to infer phylogenetic trees, which depict the evolutionary relationships among biological entities such as viral and bacterial strains in infectious outbreaks or cancerous cells in tumor progression trees. These tools re... ver más
Revista: Algorithms

 
Luís P. N. Mendes, Ana M. C. Ricardo, Alexandre J. M. Bernardino and Rui M. L. Ferreira    
We present novel velocimetry algorithms based on the hybridization of correlation-based Particle Image Velocimetry (PIV) and a combination of Lucas?Kanade and Liu?Shen optical flow (OpF) methods. An efficient Aparapi/OpenCL implementation of those method... ver más
Revista: Water

 
Dipayan Mazumder, Mithun Datta, Alexander C. Bodoh and Ashiq A. Sakib    
The increasing demand for high-speed, energy-efficient, and miniaturized electronics has led to significant challenges and compromises in the domain of conventional clock-based digital designs, most notably reduced circuit reliability, particularly in mi... ver más