Redirigiendo al acceso original de articulo en 17 segundos...
Inicio  /  Aerospace  /  Vol: 6 Par: 3 (2019)  /  Artículo
ARTÍCULO
TITULO

Effect of Piezo-Embedded Inverted Flag in Free Shear Layer Wake

Sidaard Gunasekaran and Grant Ross    

Resumen

The use of flexible inverted piezo embedded Polyvinylidene Difluoride (PVDF) as a simultaneous energy harvester and as a wake sensor is explored. The oscillation amplitude (characterized by voltage output) and oscillation frequency of the piezo-embedded PDVF was quantified in the wake of a 2D NACA 0012 model and SD7003 model at a Reynolds number of 100,000 and 67,000, respectively. The performance of the sensor was also quantified in the freestream without the presence of the wing. In order to quantify the sensor response to angle of attack and downstream distance, the amplitude and frequency of oscillations were recorded in the wing wake. Increase in angle of attack of the wing resulted in increase in oscillation frequency and amplitude of the PVDF. The results also indicated that the inverted flag configuration performed better in the wake under unsteady conditions when compared to freestream conditions. The results from Particle Image Velocimetry indicated that the wake signature was not affected by the presence of the PVDF in the wake. The root mean square voltage contours in the wake of SD7003 airfoil show remarkable free shear layer wake features such as upper and lower surface stratification and downwash angle which shows the sensitivity of the sensor to the unsteadiness in the wake. The capability of this device to act as a potential energy harvester and as a sensor has serious implications in extending the mission capabilities of small UAVs.

 Artículos similares