Resumen
When it comes to achieving sustainability and circular economy objectives, multi-criteria decision-making (MCDM) tools can be of aid in supporting decision-makers to reach a satisfying solution, especially when conflicting criteria are present. In a previous work of the authors, a hybrid MCDM tool was introduced to support the selection of sustainable materials in aviation. The reliability of an MCDM tool depends decisively on its robustness. Hence, in the present work, the robustness of the aforementioned tool has been assessed by conducting an extensive sensitivity analysis. To this end, the extent to which the results are affected by the normalization method involved in the proposed MCDM tool is examined. In addition, the sensitivity of the final output to the weights? variation as well as to the data values variation has been investigated towards monitoring the stability of the tool in terms of the final ranking obtained. In order to carry out the analysis, a case study from the aviation industry has been considered. In the current study, carbon fiber reinforced plastics (CFRP) components, both virgin and recycled, are assessed and compared with regard to their sustainability by accounting for metrics linked to their whole lifecycle. The latter assessment also accounts for the impact of the fuel type utilized during the use phase of the components. The results show that the proposed tool provides an effective and robust method for the evaluation of the sustainability of aircraft components. Moreover, the present work can provide answers to questions raised concerning the adequacy of the CFRP recycled parts performance and their expected contribution towards sustainability and circular economy goals in aviation.