REVISTA
AI

   
Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  AI  /  Vol: 2 Par: 3 (2021)  /  Artículo
ARTÍCULO
TITULO

RIANN?A Robust Neural Network Outperforms Attitude Estimation Filters

Daniel Weber    
Clemens Gühmann and Thomas Seel    

Resumen

Inertial-sensor-based attitude estimation is a crucial technology in various applications, from human motion tracking to autonomous aerial and ground vehicles. Application scenarios differ in characteristics of the performed motion, presence of disturbances, and environmental conditions. Since state-of-the-art attitude estimators do not generalize well over these characteristics, their parameters must be tuned for the individual motion characteristics and circumstances. We propose RIANN, a ready-to-use, neural network-based, parameter-free, real-time-capable inertial attitude estimator, which generalizes well across different motion dynamics, environments, and sampling rates, without the need for application-specific adaptations. We gather six publicly available datasets of which we exploit two datasets for the method development and the training, and we use four datasets for evaluation of the trained estimator in three different test scenarios with varying practical relevance. Results show that RIANN outperforms state-of-the-art attitude estimation filters in the sense that it generalizes much better across a variety of motions and conditions in different applications, with different sensor hardware and different sampling frequencies. This is true even if the filters are tuned on each individual test dataset, whereas RIANN was trained on completely separate data and has never seen any of these test datasets. RIANN can be applied directly without adaptations or training and is therefore expected to enable plug-and-play solutions in numerous applications, especially when accuracy is crucial but no ground-truth data is available for tuning or when motion and disturbance characteristics are uncertain. We made RIANN publicly available.

 Artículos similares

       
 
Jawaher Alghamdi, Yuqing Lin and Suhuai Luo    
The detection of fake news has emerged as a crucial area of research due to its potential impact on society. In this study, we propose a robust methodology for identifying fake news by leveraging diverse aspects of language representation and incorporati... ver más
Revista: Information

 
Zhendong He, Wenbin Yang, Yanjie Liu, Anping Zheng, Jie Liu, Taishan Lou and Jie Zhang    
Ensuring the safety of transmission lines necessitates effective insulator defect detection. Traditional methods often need more efficiency and accuracy, particularly for tiny defects. This paper proposes an innovative insulator defect recognition method... ver más
Revista: Information

 
Mojtaba Nayyeri, Modjtaba Rouhani, Hadi Sadoghi Yazdi, Marko M. Mäkelä, Alaleh Maskooki and Yury Nikulin    
One of the main disadvantages of the traditional mean square error (MSE)-based constructive networks is their poor performance in the presence of non-Gaussian noises. In this paper, we propose a new incremental constructive network based on the correntro... ver más
Revista: Algorithms

 
Chenhong Yan, Shefeng Yan, Tianyi Yao, Yang Yu, Guang Pan, Lu Liu, Mou Wang and Jisheng Bai    
Ship-radiated noise classification is critical in ocean acoustics. Recently, the feature extraction method combined with time?frequency spectrograms and convolutional neural networks (CNNs) has effectively described the differences between various underw... ver más

 
Michalis K. Chondros, Anastasios S. Metallinos and Andreas G. Papadimitriou    
Ensuring sea surface tranquility within port basins is of paramount importance for safe and efficient port operations and vessels? accommodation. The present study aims to introduce a robust numerical model based on mild-slope equations, capable of accur... ver más