Redirigiendo al acceso original de articulo en 16 segundos...
Inicio  /  Aerospace  /  Vol: 8 Par: 8 (2021)  /  Artículo
ARTÍCULO
TITULO

Wind Tunnel Studies on Hover and Forward Flight Performances of a Coaxial Rigid Rotor

Chang Wang    
Minqi Huang    
Xianmin Peng    
Guichuan Zhang    
Min Tang and Haowen Wang    

Resumen

The aerodynamic performance of a reduced-scale coaxial rigid rotor system in hover and steady forward flights was experimentally investigated to gain insights into the effect of interference between upper and lower rotors and the influences of the advance ratio, shaft tilt angle and lift offset. The rotor system featured by 2 m-diameter, four-bladed upper and lower hingeless rotors and was installed in a coaxial rotor test rig. Experiments were conducted in the F3.2 m wind tunnel at China Aerodynamics Research and Development Center (CARDC). The rotor system was tested in hover states at collective pitches ranging from 0° to 13° and it was also tested in forward flights at advance ratios up to 0.6, with specific focus on the shaft tilt angle and lift offset sweeps. To ensure that the coaxial rotor was operating in a similar manner to that of the real flight, the torque difference was trimmed to zero in hover flight, whilst the constant lift coefficient was maintained in forward flight. An isolated single-rotor configuration test was also conducted with the same pitch angle setting in the coaxial rotor. The hover test results demonstrate that the figure of merit (FM) value of the lower rotor is lower than that of the upper rotor, and both are lower than that of the isolated single rotor. Moreover, the coaxial rotor configuration can contribute to better hover efficiency under the same blade loading coefficient (CT/σ" role="presentation" style="position: relative;">CT/sCT/s C T / s ). In forward flight, the effective lift-to-drag (L/De) ratio of the coaxial rigid rotor does not monotonously change as the advance ratio increases. Increases in the required power and drag in the case with a high advance ratio of 0.6 leads to the decreasing L/De ratio of the rotor. Meanwhile, the L/De ratio of the rotor is relatively high when the rotor shaft is tilted backward. The increasing lift offset tends to result in reduced required rotor power and an increase in the rotor drag. When the effect of the reduced rotor power is greater than that of the increased rotor drag, the L/De ratio increases as the lift offset increases. The L/De ratio can benefit significantly from lift offset at a high advance ratio, but it is much less influenced by lift offset at a low advance ratio. The forward performance efficiency of the upper rotor is poorer than that of the lower rotor, which is significantly different from the case in the hover flight.

 Artículos similares

       
 
Catharina Moreira, Nikolai Herzog and Christian Breitsamter    
Recent developments in electrical Vertical Take-off and Landing (eVTOL) vehicles show the need for a better understanding of transient aero-mechanical propeller loads for non-axial inflow conditions. The variety of vehicle configurations conceptualized w... ver más
Revista: Aerospace

 
Zhenlong Wu, Tianyu Zhang, Yuan Gao and Huijun Tan    
In this paper, a novel small-scale gust generator research facility was designed and examined for generating Sears-type gusts. The design scheme, integration with the wind tunnel, experiment and validation of its capability are presented in detail. To he... ver más
Revista: Aerospace

 
Yoichi Suenaga and Kojiro Suzuki    
This study examines the wing hinge oscillations in an aircraft concept that employs multiple wings, or small aircraft, chained at the wing tips through freely rotatable hinges with minimal structural damping and no mechanical position-locking system. Thi... ver más
Revista: Aerospace

 
María Elena Tejeda-del-Cueto, Manuel Alberto Flores-Alfaro, Miguel Toledo-Velázquez, Lorena del Carmen Santos-Cortes, José Hernández-Hernández and Marco Osvaldo Vigueras-Zúñiga    
The objective of this study is to develop a genetic algorithm that uses the IGP parameterization to increase the lift coefficient (CL) of three airfoils to be used on wings of unmanned aerial vehicles (UAVs). The geometry of three baseline airfoils was m... ver más
Revista: Aerospace

 
Daniele Granata, Alberto Savino and Alex Zanotti    
The present study aimed to investigate the capability of mid-fidelity aerodynamic solvers in performing a preliminary evaluation of the static and dynamic stability derivatives of aircraft configurations in their design phase. In this work, the mid-fidel... ver más
Revista: Aerospace