Redirigiendo al acceso original de articulo en 16 segundos...
Inicio  /  Aerospace  /  Vol: 10 Par: 3 (2023)  /  Artículo
ARTÍCULO
TITULO

Shock Equations and Jump Conditions for the 2D Adjoint Euler Equations

Carlos Lozano and Jorge Ponsin    

Resumen

This paper considers the formulation of the adjoint problem in two dimensions when there are shocks in the flow solution. For typical cost functions, the adjoint variables are continuous at shocks, wherein they have to obey an internal boundary condition, but their derivatives may be discontinuous. The derivation of the adjoint shock equations is reviewed and detailed predictions for the behavior of the gradients of the adjoint variables at shocks are obtained as jump conditions for the normal adjoint gradients in terms of the tangent gradients. Several numerical computations on a very fine mesh are used to illustrate the behavior of numerical adjoint solutions at shocks.

 Artículos similares

       
 
Jianxiu Qin and Dehua Zhu    
Two-dimensional oblique detonation waves (ODWs) induced by finite wedges in a stoichiometric hydrogen?air mixture have been investigated numerically based on reactive Euler equations with a detailed chemical reaction model. The main zone affected by the ... ver más
Revista: Aerospace

 
Shunyu Yao, Guangyuan Kan, Changjun Liu, Jinbo Tang, Deqiang Cheng, Jian Guo and Hu Jiang    
In recent years, mountainous areas in China have faced frequent geological hazards, including landslides, debris flows, and collapses. Effective simulation of these events requires a solver for shallow water equations (SWEs). Traditional numerical method... ver más
Revista: Water

 
Giovanni Cannata, Federica Palleschi, Benedetta Iele and Francesco Gallerano    
A new three-dimensional high-order shock-capturing model for the numerical simulation of breaking waves is proposed. The proposed model is based on an integral contravariant form of the Navier?Stokes equations in a time-dependent generalized curvilinear ... ver más

 
Christer Fureby, Guillaume Sahut, Alessandro Ercole and Thommie Nilsson    
Large Eddy Simulation (LES) has rapidly developed into a powerful computational methodology for fluid dynamic studies, between Reynolds-Averaged Navier?Stokes (RANS) and Direct Numerical Simulation (DNS) in both accuracy and cost. High-speed combustion a... ver más
Revista: Aerospace

 
O. A. Azarova, T. A. Lapushkina, K. V. Krasnobaev and O. V. Kravchenko    
The paper is devoted to the problem of the interaction between a shock wave and a thermally stratified energy source for the purpose of supersonic/hypersonic flow control realization. The effect of the thermally stratified energy source on a shock wave w... ver más
Revista: Aerospace