Redirigiendo al acceso original de articulo en 15 segundos...
Inicio  /  Aerospace  /  Vol: 9 Par: 1 (2022)  /  Artículo
ARTÍCULO
TITULO

A Deep Learning Approach for Short-Term Airport Traffic Flow Prediction

Zhen Yan    
Hongyu Yang    
Fan Li and Yi Lin    

Resumen

Airport traffic flow prediction is a fundamental research topic in the field of air traffic flow management. Most existing works focus on the single airport traffic flow prediction with temporal dynamics but fail to consider the influence of the topological airport network. In this paper, a novel deep learning-based framework, called airport traffic flow prediction network (ATFPNet), is proposed to capture spatial-temporal dependencies of the historical airport traffic flow (departure and arrival) for the multiple-step situational (network-level) arrival flow prediction. Firstly, considering the nature of the airport distribution and the context of air transportation, a special semantic graph built on the flight schedule is applied to represent the airport network, which is the key to encoding the situational airport traffic flow into a single representation. Then, the graph convolution operator and the gated recurrent unit are combined to extract high-level transition patterns of airport traffic flow in the spatial and temporal dimensions. Finally, a real-world airport traffic flow dataset is applied to validate the effectiveness of the proposed model, and the experimental results demonstrate that the ATFPNet outperforms other baselines on different prediction horizons. Specifically, the proposed method achieves up to 17% MAE improvement compared to baselines. Based on the proposed approach, efficient traffic planning is expected to be achieved for airport management.

 Artículos similares

       
 
Seokjoon Kwon, Jae-Hyeon Park, Hee-Deok Jang, Hyunwoo Nam and Dong Eui Chang    
Deep learning algorithms are widely used for pattern recognition in electronic noses, which are sensor arrays for gas mixtures. One of the challenges of using electronic noses is sensor drift, which can degrade the accuracy of the system over time, even ... ver más
Revista: Applied Sciences

 
Shihao Ma, Jiao Wu, Zhijun Zhang and Yala Tong    
Addressing the limitations, including low automation, slow recognition speed, and limited universality, of current mudslide disaster detection techniques in remote sensing imagery, this study employs deep learning methods for enhanced mudslide disaster d... ver más
Revista: Applied Sciences

 
Ryota Higashimoto, Soh Yoshida and Mitsuji Muneyasu    
This paper addresses the performance degradation of deep neural networks caused by learning with noisy labels. Recent research on this topic has exploited the memorization effect: networks fit data with clean labels during the early stages of learning an... ver más
Revista: Applied Sciences

 
Giorgio Lazzarinetti, Riccardo Dondi, Sara Manzoni and Italo Zoppis    
Solving combinatorial problems on complex networks represents a primary issue which, on a large scale, requires the use of heuristics and approximate algorithms. Recently, neural methods have been proposed in this context to find feasible solutions for r... ver más
Revista: Algorithms

 
Luis M. de Campos, Juan M. Fernández-Luna, Juan F. Huete, Francisco J. Ribadas-Pena and Néstor Bolaños    
In the context of academic expert finding, this paper investigates and compares the performance of information retrieval (IR) and machine learning (ML) methods, including deep learning, to approach the problem of identifying academic figures who are expe... ver más
Revista: Algorithms