Resumen
Data-driven Remaining Useful Life (RUL) prediction is one of the core technologies of Prognostics and Health Management (PHM). Committed to improving the accuracy of RUL prediction for aero-engines, this paper proposes a model that is entirely based on the attention mechanism. The attention model is divided into the multi-head self-attention and timing feature enhancement attention models. The multi-head self-attention model employs scaled dot-product attention to extract dependencies between time series; the timing feature enhancement attention model is used to accelerate and enhance the feature selection process. This paper utilises Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) turbofan engine simulation data obtained from NASA Ames? Prognostics Center of Excellence and compares the proposed algorithm to other models. The experiments conducted validate the superiority of our model?s approach.